若0<a<1,c>1,則ac+1與a+c的大小關(guān)系為( 。
分析:先作差,再進行因式分解,利用0<a<1,c>1,判斷a-1<0,c-1>0,從而可得結(jié)論.
解答:解:由題意,ac+1-(a+c)=(a-1)(c-1)
∵0<a<1,c>1
∴a-1<0,c-1>0,
∴ac+1-(a+c)=(a-1)(c-1)<0
 即ac+1<a+c,
故選B.
點評:本題考查用比較法證明不等式的方法和步驟,將兩個式子作差、變形、判斷符號,其中,判斷符號是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若0<a<1,c>1,設A=ac+1,B=a+c,則A,B的關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若0<a<1,下列不等式一定成立的是(    )

A.|log(1+a)(1-a)|+|log(1-a)(1+a)|>2

B.|log(1+a)(1-a)|<|log(1-a)(1+a)|

C.|log(1+a)(1-a)+log(1-a)(1+a)|<|log(1+a)(1-a)|+|log(1-a)(1+a)|

D.|log(1+a)(1-a)-log(1-a)(1+a)|<|log(1+a)(1-a)|-|log(1-a)(1+a)|

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年吉林省長春十一中高一(下)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

若0<a<1,c>1,設A=ac+1,B=a+c,則A,B的關(guān)系為( )
A.A<B
B.A>B
C.A=B
D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年海南省?谑泻D现袑W高二(下)期末數(shù)學試卷(文科)(解析版) 題型:選擇題

若0<a<1,c>1,則ac+1與a+c的大小關(guān)系為( )
A.a(chǎn)c+1>a+c
B.a(chǎn)c+1<a+c
C.a(chǎn)c+1=a+c
D.不能確定

查看答案和解析>>

同步練習冊答案