把顏色分別為紅、黑、白的3個(gè)球隨機(jī)地分給甲、乙、丙3人,每人分得1個(gè)球.事件“甲分得白球”與事件“乙分得白球”是(  )
A.對(duì)立事件B.不可能事件
C.互斥事件D.必然事件
C
由于甲、乙、丙3人都可以持有白球,故事件“甲分得白球”與事件“乙分得白球”不可能是對(duì)立事件.又事件“甲分得白球”與事件“乙分得白球”不可能同時(shí)發(fā)生,故兩事件的關(guān)系是互斥事件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某煤礦發(fā)生透水事故時(shí),作業(yè)區(qū)有若干人員被困.救援隊(duì)從入口進(jìn)入之后有兩條巷道通往作業(yè)區(qū)(如下圖),巷道有三個(gè)易堵塞點(diǎn),各點(diǎn)被堵塞的概率都是;巷道有兩個(gè)易堵塞點(diǎn),被堵塞的概率分別為

(1)求巷道中,三個(gè)易堵塞點(diǎn)最多有一個(gè)被堵塞的概率;
(2)若巷道中堵塞點(diǎn)個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望,并按照"平均堵塞點(diǎn)少的巷道是較好的搶險(xiǎn)路線"的標(biāo)準(zhǔn),請(qǐng)你幫助救援隊(duì)選擇一條搶險(xiǎn)路線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

從分別寫有1,2,3,4,5的5張卡片中任取2張,這2張卡片上的數(shù)字之和恰好是5的概率是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)有-4×4正方形網(wǎng)格,其各個(gè)最小的正方形的邊長(zhǎng)為4cm,現(xiàn)用直徑為2cm的硬幣投擲到此網(wǎng)格上;假設(shè)每次投擲都落在最大的正方形內(nèi)或與最大的正方形有公共點(diǎn).求:
(1)硬幣落下后完全在最大的正方形內(nèi)的概率;
(2)硬幣落下后與網(wǎng)格線沒(méi)有公共點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

6個(gè)大小相同的小球分別標(biāo)有數(shù)字1,1,1,2,2,2,把它們放在一個(gè)盒子里,從中任意摸出兩個(gè)小球,它們所標(biāo)有的數(shù)字分別為m,n,記S=m+n.
(I)設(shè)“S=2”為事件A,求事件A發(fā)生的概率;
(II)記Smax為S的最大值,Smin為S的最小值,若a∈[0,Smax],b∈[Smin,3],設(shè)“x2+2ax+b2≥0恒成立”為事件B,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某兒童玩具自動(dòng)售貨機(jī)里共有18只“海寶”和2只“熊貓”,而在每投一枚一元硬幣后,從出口隨機(jī)掉出一個(gè)玩具,則某孩子投了兩次硬幣,兩次都買到的是“海寶”的概率是______.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有編號(hào)為1,2,3的三個(gè)白球,編號(hào)為4,5,6的三個(gè)黑球,這六個(gè)球除編號(hào)和顏色外完全相同,現(xiàn)從中任意取出兩個(gè)球.
(1)求取得的兩個(gè)球顏色相同的概率;
(2)求取得的兩個(gè)球顏色不相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

荷花池中,有一只青蛙在成品字形的三片荷葉上跳來(lái)跳去(每次跳躍時(shí),均從一葉跳到另一葉),而且逆時(shí)針?lè)较蛱母怕适琼槙r(shí)針?lè)较蛱母怕实膬杀叮鐖D所示.假設(shè)現(xiàn)在青蛙在A葉上,則跳四次之后停在A葉上的概率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某小組有3名男生和2名女生,從中任選2名同學(xué)去參加演講比賽.事件“至少1名女生”與事件“全是男生”(      )
A.是互斥事件,不是對(duì)立事件B.是對(duì)立事件,不是互斥事件
C.既是互斥事件,也是對(duì)立事件D.既不是互斥事件不是對(duì)立事件

查看答案和解析>>

同步練習(xí)冊(cè)答案