【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點,AC=6,BC=8,EC=12,則DE的長為

【答案】13
【解析】如圖,EC⊥AC,EC⊥CB,CB∩CA=C
∴EC⊥面ABC
而CD面ABC
∴EC⊥CD
∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜邊AB的中點,
∴CD=5,ED= =13
所以答案是:13.

【考點精析】通過靈活運用直線與平面垂直的判定和直線與平面垂直的性質,掌握一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想;垂直于同一個平面的兩條直線平行即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)+2= ,當x∈(0,1]時,f(x)=x2 , 若在區(qū)間(﹣1,1]內,g(x)=f(x)﹣t(x+2)有兩個不同的零點,則實數(shù)t的取值范圍是(
A.(0, ]
B.(0, ]
C.[﹣ , ]
D.[﹣ ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:

(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程選講

以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,

在直角坐標系中,曲線的參數(shù)方程為是參數(shù), ),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)當時,曲線相交于、兩點,求以線段為直徑的圓的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,AP=1,AD=2,E為線段PD上一點,記 =λ. 當λ= 時,二面角D﹣AE﹣C的平面角的余弦值為

(1)求AB的長;
(2)當 時,求異面直線BP與直線CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱中, ,側面底面, 的中點, .

(Ⅰ)求證: ;

(Ⅱ)求直線與平面所成線面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN= π,在△ABC中,角A、B、C所對的邊分別是a、b、c.
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中 的值;

(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準(噸),估計的值,并說明理由;

查看答案和解析>>

同步練習冊答案