(1)求證:f(x)是偶函數(shù);
(2)證明f(x)在(0,+∞)上是增函數(shù);
(3)解不等式f(2x2-1)<2.
(1)證明:令x1=x2=1,得f(1)=
∴f(1)=0.
令x1=x2=-1,得f(-1)=0.
∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x).
∴f(x)是偶函數(shù).
(2)證明:設(shè)x2>x1>0,則
f(x2)-f(x1)=f(x1·)-f(x1)
=f(x1)+f()-f(x1)=f().
∵x2>x1>0,∴>1.
∴f()>0,即f(x2)-f(x1)>0.
∴f(x2)>f(x1).
∴f(x)在(0,+∞)上是增函數(shù).
(3)解:∵f(2)=1,∴f(4)=f(2)+f(2)=2.
∵f(x)是偶函數(shù),∴不等式f(2x2-1)<2可化為f(|2x2-1|)<f(4).
又∵函數(shù)在(0,+∞)上是增函數(shù),
∴|2x2-1|<4.
解得-<x<,即不等式的解集為(-,).
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
a-3 |
2 |
x | 2 1 |
x | 2 2 |
x | 3 1 |
x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
1+x |
1 |
10 |
1 |
9 |
1 |
2 |
19 |
2 |
19 |
2 |
1 |
2 |
1 |
9 |
1 |
10 |
1 |
x |
| ||
1+
|
x |
1+x |
1 |
1+x |
x |
1+x |
1+x |
1+x |
1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
1-x |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
lim |
n→∞ |
4Sn-9Sn |
4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x+1-a |
a-x |
1 |
2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
1-x |
1 |
n |
2 |
n |
n-1 |
n |
1 |
a1 |
1 |
a2 |
1 |
an |
sinα | ||
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com