2.函數(shù)y=3cos(2x+$\frac{π}{6}$)的最小正周期為π.

分析 根據(jù)余弦函數(shù)y=Acos(ωx+φ)的最小正周期為T=$\frac{2π}{ω}$,求出即可.

解答 解:函數(shù)y=3cos(2x+$\frac{π}{6}$)的最小正周期為
T=$\frac{2π}{ω}$=$\frac{2π}{2}$=π.
故答案為:π.

點評 本題考查了余弦函數(shù)y=Acos(ωx+φ)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)α,β為兩個不同的平面,l為直線,則下列結(jié)論正確的是(  )
A.l∥α,α⊥β⇒l⊥αB.l⊥α,α⊥β⇒l∥αC.l∥α,α∥β⇒l∥βD.l⊥α,α∥β⇒l⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,正方體ABCD-A1B1C1D1繞其體對角線BD1旋轉(zhuǎn)θ之后與其自身重合,則θ的值可以是( 。
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b是非零實數(shù),若a<b,則下列不等式成立的是( 。
A.$\frac{a}$<$\frac{a}$B.$\frac{1}{a^{2}}$<$\frac{1}{{a}^{2}b}$C.a2<b2D.ab2<a2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AC=2$\sqrt{3}$,AA1=$\sqrt{3}$,AB=2,點D在棱B1C1上,且B1C1=4B1D
(Ⅰ)求證:BD⊥A1C
(Ⅱ)求二面角B-A1D-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x}+4a,x>3}\\{2x+{a}^{2},x≤3}\end{array}\right.$,其中a>0,若f(x)的值域為R,則實數(shù)a的取值范圍是[7,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知關(guān)于x的函數(shù)f(x)=x2-2ax+2.
(1)當(dāng)a≤2時,求f(x)在[$\frac{1}{3}$,3]上的最小值g(a);
(2)如果函數(shù)f(x)同時滿足:
        ①函數(shù)在整個定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
        ②在函數(shù)的定義域內(nèi)存在區(qū)間[p,q],使得函數(shù)在區(qū)間[p,q]上的值域為[p2,q2].則我們稱函數(shù)f(x)是該定義域上的“閉函數(shù)”.
(i)若關(guān)于x的函數(shù)y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“閉函數(shù)”,求實數(shù)t的取值范圍;
(ii)判斷(1)中g(shù)(a)是否為“閉函數(shù)”?若是,求出p,q的值或關(guān)系式;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=x2-2(a-2)x-b2+13.
(1)先后兩次拋擲一枚質(zhì)地均勻的骰子(骰子六個面上分別標(biāo)有數(shù)字1,2,3,4,5,6),骰子向上的數(shù)字一次記為a,b,求方程f(x)=0有兩個不等正根的概率;
(2)如果a∈[2,6],求函數(shù)f(x)在區(qū)間[2,3]上是單調(diào)函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在正方體ABCD-A1B1C1D1中AD1與BD所成的角為( 。
A.45°B.90°C.60°D.120°

查看答案和解析>>

同步練習(xí)冊答案