9.已知數(shù)列{an}是等比數(shù)列,首項a1=1,公比q>0,其前n項和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=n,求數(shù)列{bn}的前n項和Tn

分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(1)∵S1+a1,S3+a3,S2+a2成等差數(shù)列,
∴2(S3+a3)=S2+a2+S1+a1
∴$2{a}_{1}(1+q+2{q}^{2})$=3a1+2a1q,
化為4q2=1,公比q>0,
∴q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n-1}$.
(2)∵anbn=n,
∴bn=n•2n-1
∴數(shù)列{bn}的前n項和Tn=1+2×2+3×22+…+n•2n-1,
2Tn=2+2×22+3×23+…+(n-1)•2n-1+n•2n
∴-Tn=1+2+22+…+2n-1-n•2n=$\frac{1-{2}^{n}}{1-2}$-n•2n=(1-n)•2n-1,
∴Tn=(n-1)•2n+1.

點評 本題考查了“錯位相減法”、等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)在極坐標(biāo)系Ox中,設(shè)集合A={(ρ,θ)|0≤θ≤$\frac{π}{4}$,0≤ρ≤cosθ},求集合A所表示的區(qū)域的面積;
(2)在直角坐標(biāo)系xOy中,直線l1$\left\{\begin{array}{l}{x=-4+tcos\frac{π}{4}}\\{y=tsin\frac{π}{4}}\end{array}\right.$(t為參數(shù)),曲線C1$\left\{\begin{array}{l}{x=acosθ}\\{y=2sinθ}\end{array}\right.$(θ表示參數(shù)),其中a>0,若曲線C上所有點均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.與圓C1:x2+y2-2x-2y+1=0和直線l:y+1=0都相切的圓的圓心軌跡方程是$(x-1)^{2}=6(y+\frac{1}{2})$和$(x-1)^{2}=2(y-\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=-x2+mx+1,(x∈R)
①求f(x)在[-1,1]上的最小值.
②對于函數(shù)y=g(x)在定義域內(nèi)給定區(qū)間[a,b],如果存在x0(a<x0<b)滿足$g({x_0})=\frac{g(b)-g(a)}{b-a}$,則稱函數(shù)g(x)是區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個“均值點”.如函數(shù)y=x2是[-1,1]上的平均值函數(shù),0就是它的均值點.若函數(shù)f(x)是區(qū)間[-1,1]上的平均值函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7≠0,則b2b12=( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓柱的底面半徑為4,與圓柱底面成60°角的平面截這個圓柱得到一個橢圓,則這個橢圓的離心率為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\frac{{{x^2}+1}}{2x+m}$是奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)為定義在R上的奇函數(shù),且在(0,+∞)上是增函數(shù),f(2)=0,則x[f(x)-f(-x)]<0的解集為(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0]是增函數(shù),設(shè)a=f(log47),b=f(log${\;}_{\frac{1}{2}}$3),c=f(0.20.6),則a,b,c的大小關(guān)系是b<a<c.

查看答案和解析>>

同步練習(xí)冊答案