在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.

 

【解析】∵圓C的方程可化為(x-4)2+y2=1,∴圓C的圓心為(4,0),半徑為1.由題意知,直線y=kx-2上至少存在一點A(x0,kx0-2),以該點為圓心,1為半徑的圓與圓C有公共點,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.

∵ACmin即為點C到直線y=kx-2的距離,

≤2,解得0≤k≤.∴k的最大值是.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第8課時練習卷(解析版) 題型:填空題

已知△ABC外接圓半徑R=,且∠ABC=120°,BC=10,邊BC在x軸上且y軸垂直平分BC邊,則過點A且以B、C為焦點的雙曲線方程為______________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

若點O和點F分別為橢圓=1的中心和左焦點,點P為橢圓上的任意一點,則·的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

已知△ABC的頂點B、C在橢圓+y2=1上,頂點A與橢圓的焦點F1重合,且橢圓的另外一個焦點F2在BC邊上,則△ABC的周長是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為r1=13;圓弧C2過點A(29,0).

(1)求圓弧C2所在圓的方程;

(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;

(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題

已知圓C:x2+(y-3)2=4,一動直線l過A(-1,0)與圓C相交于P、Q兩點,

M是PQ中點,l與直線m:x+3y+6=0相交于N.

(1)求證:當l與m垂直時,l必過圓心C;

(2)當PQ=2時,求直線l的方程;

(3)探索·是否與直線l的傾斜角有關?若無關,請求出其值;若有關,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題

已知圓O:x2+y2=4,則過點P(2,4)與圓O相切的切線方程為________________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.

(1)求實數(shù)b的取值范圍;

(2)求圓C的方程;

(3)圓C是否經過定點(與b的取值無關)?證明你的結論.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題

已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為________.

 

查看答案和解析>>

同步練習冊答案