【題目】如圖,在四棱錐中,底面是平行四邊形, ,側面底面, , , 分別為的中點,點在線段上.
(Ⅰ)求證: 平面;
(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.
【答案】(Ⅰ)詳見解析(Ⅱ)
【解析】試題分析:(Ⅰ)線面垂直的證明,往往利用線面垂直判定定理,即從線線垂直出發(fā)給予證明,而線線垂直的尋找與論證,一般從兩個方面,一是利用平幾知識,如本題經(jīng)解三角形可得,再根據(jù)中點條件得平行條件,從而可得.二是利用線面位置關系有關定理進行轉化,如本題利用面面垂直的性質(zhì)定理可得線面垂直,再根據(jù)線面垂直性質(zhì)定理可得線線垂直.(Ⅱ)解決有關線面角的問題,一般利用空間向量數(shù)量積進行處理比較方便,先根據(jù)條件建立空間直角坐標系,設立各點坐標,利用方程組解出面的法向量,再根據(jù)向量數(shù)量積求出直線向量與法向量夾角余弦值,最后根據(jù)線面角與向量夾角之間關系列等量關系,求出比值.
試題解析:
(Ⅰ)證明:在平行四邊形中,因為, ,
所以.由分別為的中點,得,
所以.
因為側面底面,且,所以底面.
又因為底面,所以.
又因為, 平面, 平面,
所以平面.
(Ⅱ)解:因為底面, ,所以兩兩垂直,
以分別為、、,建立空間直角坐標系,
則,
所以, , ,
設,則,
所以, ,易得平面的法向量.
設平面的法向量為,由, ,得
令, 得.
因為直線與平面所成的角和此直線與平面所成的角相等,
所以,即,所以 ,
解得,或(舍). 綜上所得:
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若和在有相同的單調(diào)區(qū)間,求的取值范圍;
(Ⅱ)令(),若在定義域內(nèi)有兩個不同的極值點.
(i)求的取值范圍;
(ii)設兩個極值點分別為, ,證明: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義域為,對任意都有,且當時, .
(1)試判斷的單調(diào)性,并證明;
(2)若,
①求的值;
②求實數(shù)的取值范圍,使得方程有負實數(shù)根.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為,且點在橢圓上.
⑴求橢圓的標準方程;
⑵已知動直線過點且與橢圓交于兩點.試問軸上是否存在定點,使得恒成立?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值4 和最小值1,設.
(1)求的值;
(2)若不等式在區(qū)間上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和.
(1)求數(shù)列{an}的通項公式;
(2)若恒成立,求k的取值范圍;
(3)是否存在正整數(shù)m,k,使得am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,其前項和為,數(shù)列是公比大于0的等比數(shù)列,且, , .
(Ⅰ)求數(shù)列和的通項公式;
(Ⅱ)令,求數(shù)列的前項和為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com