A. | 2 | B. | $1+\sqrt{2}$ | C. | $1+\frac{{\sqrt{2}}}{2}$ | D. | $1+2\sqrt{2}$ |
分析 把圓的方程化為標準方程后,找出圓心坐標和半徑r,利用點到直線的距離公式求出圓心到已知直線的距離d,求出d+r即為所求的距離最大值.
解答 解:把圓的方程化為標準方程得:(x-2)2+(y-1)2=1,
所以圓心坐標為(2,1),圓的半徑r=1,
所以圓心到直線x-y=2的距離d=$\frac{|2-1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
則圓上的點到直線x-y=2的距離最大值為d+r=$\frac{\sqrt{2}}{2}$+1.
故選:C.
點評 本題主要考查直線與圓的位置關系,當考查圓上的點到直線的距離問題,基本思路是:先求出圓心到直線的距離,最大值時,再加上半徑,最小值時,再減去半徑.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ | C. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$ | D. | $\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(log23)<f(log0.55)<f(a) | B. | f(log0.55)<f(log23)<f(a) | ||
C. | f(a)<f(log23)<f(log0.55) | D. | f(a)<f(log0.55)<f(log23) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 當a>1時,函數(shù)y=ax是增函數(shù),因為2>l,所以函數(shù)y=2x是增函數(shù).這種推理是合情推理 | |
B. | 在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c,則a∥c,將此結(jié)論放到空間中也是如此.這種推理是演繹推理 | |
C. | 若分類變量X與Y的隨機變量K2的觀測值k越小,則兩個分類變量有關系的把握性越小 | |
D. | $\int_{-1}^1{{x^3}dx=\frac{1}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 20 | B. | -20 | C. | 15 | D. | -15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com