分析 設(shè)$\overrightarrow c$與$\overrightarrow a$,$\overrightarrow b$的夾角為α,$\overrightarrow a$,$\overrightarrow b$間的夾角為2α,則$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$=1×1×cosα>0,$\overrightarrow a$•$\overrightarrow b$=cos2α.將|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|兩邊平方,化簡整理,設(shè)t+$\frac{1}{t}$=m(m≥2),化為m的二次函數(shù),由最值求法,可得最小值,結(jié)合二倍角的余弦公式,即可得到所求向量的數(shù)量積.
解答 解:由$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是三個(gè)單位向量,且$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$>0,
設(shè)$\overrightarrow c$與$\overrightarrow a$,$\overrightarrow b$的夾角為α,$\overrightarrow a$,$\overrightarrow b$間的夾角為2α,
則$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$=1×1×cosα>0,$\overrightarrow a$•$\overrightarrow b$=cos2α.
|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|2=$\overrightarrow{c}$2+t2$\overrightarrow{a}$2+$\frac{1}{{t}^{2}}$$\overrightarrow$2-2t$\overrightarrow c$•$\overrightarrow a$-$\frac{2}{t}$$\overrightarrow c$•$\overrightarrow b$+2$\overrightarrow a$•$\overrightarrow b$
=1+t2+$\frac{1}{{t}^{2}}$-2(t+$\frac{1}{t}$)cosα+2cos2α.
設(shè)t+$\frac{1}{t}$=m(m≥2),則|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|2=m2-2mcosα+2cos2α-1
=(m-cosα)2+2cos2α-1-cos2α
由m≥2,0<cosα≤1,
故當(dāng)m=2,即t=1時(shí),取得最小值(2-cosα)2+2cos2α-1-cos2α,
由題意可得(2-cosα)2+2cos2α-1-cos2α=$\frac{1}{4}$,
即為4cos2α-4cosα+1=$\frac{1}{4}$,
解得cosα=$\frac{1}{4}$或$\frac{3}{4}$.
即有$\overrightarrow a$•$\overrightarrow b$=cos2α=2cos2α-1=$\frac{1}{8}$或-$\frac{7}{8}$.
故答案為:$\frac{1}{8}$或-$\frac{7}{8}$.
點(diǎn)評 本題考查向量數(shù)量積的運(yùn)算,注意運(yùn)用平方法和向量的平方即為向量的模,同時(shí)考查三角函數(shù)的變換公式,考查運(yùn)算求解能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 6 | 3 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | z的最小值為-1 | B. | |OP|的最小值為$\sqrt{6}$ | C. | z的最大值為-15 | D. | |PQ|的最大值為$2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=3x2-$\frac{1}{{x}^{2}}$ | B. | y′=3x2-$\frac{1}{x}$ | C. | y′=3x2+$\frac{1}{{x}^{2}}$ | D. | y′=3x2+$\frac{1}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com