19.“已知a,b,c,d是實(shí)數(shù),若a>c,b>d,則a+b>c+d”,寫(xiě)出上述命題的逆命題、否命題與逆否命題,并分別判斷它們的真假.

分析 根據(jù)四種命題的定義,寫(xiě)出原命題的逆命題、否命題與逆否命題,判斷真假可得答案.

解答 解:∵原命題為:“已知a,b,c,d是實(shí)數(shù),若a>c,b>d,則a+b>c+d”,為真命題;
∴逆命題為:“已知a,b,c,d是實(shí)數(shù),若a+b>c+d,則a>c,b>d”,為假命題
否命題為:“已知a,b,c,d是實(shí)數(shù),若a≤c,或b≤d,則a+b≤c+d”,為假命題
逆否命題為:“已知a,b,c,d是實(shí)數(shù),若a+b≤c+d,則a≤c或,b≤d”,為真命題;

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題及其真假關(guān)系,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,已知$\frac{c}{cosC}$=$\frac{4a-b}{cosB}$
(1)求cosC的值;
(2)若c=$\sqrt{3}$,△ABC的面積S=$\frac{\sqrt{15}}{4}$,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)ω>0,若函數(shù)f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.(1,$\frac{3}{2}$]C.[0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是三個(gè)單位向量,且$\overrightarrow c$•$\overrightarrow a$=$\overrightarrow c$•$\overrightarrow b$>0,則對(duì)于任意的正實(shí)數(shù)t,|${\overrightarrow c$-t$\overrightarrow a$-$\frac{1}{t}$$\overrightarrow b}$|的最小值為$\frac{1}{2}$,則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{8}$或-$\frac{7}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{2x-1}{x+1}$.
(1)判斷并證明函數(shù)f(x)在[0,+∞)的單調(diào)性;
(2)若x∈[1,m]時(shí)函數(shù)f(x)的最大值與最小值的差為$\frac{1}{2}$,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.直線y=kx+1與雙曲線x2-$\frac{y^2}{4}$=1交于A,B兩點(diǎn),且|AB|=8$\sqrt{2}$,則實(shí)數(shù)k的值為( 。
A.$\sqrt{7}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.曲線$\frac{{x}^{2}}{n}$-y2=1(n>1)的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且滿足PF1+PF2=2$\sqrt{n+2}$,則△PF1F2的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列說(shuō)法正確的是(  )
A.第二象限角比第一象限角大
B.60°角與600°角是終邊相同角
C.三角形的內(nèi)角是第一象限角或第二象限角
D.將表的分針撥慢10分鐘,則分針轉(zhuǎn)過(guò)的角的弧度數(shù)為$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在體積為72的直三棱柱ABC-A1B1C1中,AB=3,AC=4,AA1=12.
(1)求角∠BAC的大。
(2)若該三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,求球O的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案