18.已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(-x-1)=f(x-1),當(dāng)x∈[-1,0]時(shí),f(x)=-x3,則關(guān)于x的方程f(x)=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上的所有實(shí)數(shù)解之和為(  )
A.-7B.-6C.-3D.-1

分析 由f(x)是偶函數(shù)說(shuō)明函數(shù)圖象關(guān)于y軸對(duì)稱(chēng),由f(-x-1)=f(x-1),得到x=-1是函數(shù)的對(duì)稱(chēng)軸,畫(huà)出函數(shù)f(x)的圖象,只要找出函數(shù)f(x)的圖象與y=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上內(nèi)交點(diǎn)的情況,根據(jù)對(duì)稱(chēng)性即可求出答案.

解答 解:∵函數(shù)f(x)是定義在R上的偶函數(shù),f(-x-1)=f(x-1),
∴x=-1是函數(shù)的對(duì)稱(chēng)軸,
分別畫(huà)出y=f(x)與y=|cosπx|在[-$\frac{5}{2}$,$\frac{1}{2}$]上圖象,
交點(diǎn)依次為x1,x2,x3,x4,x5,x6,x7,
∴x1+x7=-2,x2+x6=-2,x3+x5=-2,x4=-1,
∴x1+x2+x3+x4+x5+x6+x7=-2×3-1=-7,
故選:A

點(diǎn)評(píng) 本題考查了函數(shù)與方程的綜合應(yīng)用以及函數(shù)圖象的對(duì)稱(chēng)性與奇偶性等知識(shí)點(diǎn),數(shù)形結(jié)合是解決本題的關(guān)鍵,屬中檔題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若f(x)=xsinx,則函數(shù)f(x)的導(dǎo)函數(shù)f′(x)等于( 。
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=-lg(x+1)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)$P(1,\frac{3}{2})$在橢圓上.
(1)求該橢圓的方程;
(2)過(guò)橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓x2+y2=3的兩條切線(xiàn),切點(diǎn)分別為M,N(M,N不在坐標(biāo)軸上),若直線(xiàn)MN在x軸,y軸上的截距分別為m,n,證明$\frac{a^2}{n^2}+\frac{b^2}{m^2}$為定值;
(3)若P1,P2是橢圓C1:$\frac{x^2}{a^2}+\frac{{3{y^2}}}{b^2}$=1上不同的兩點(diǎn),P1P2⊥x軸,圓E過(guò)P1,P2且橢圓C1上任意一點(diǎn)都不在圓E內(nèi),則稱(chēng)圓E為該橢圓的一個(gè)內(nèi)切圓,試問(wèn):橢圓C1是否存在過(guò)左焦點(diǎn)F1的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$的離心率為$e=\frac{1}{2}$,則m的值為( 。
A.$\frac{20}{3}$B.$\frac{15}{4}$或$\frac{20}{3}$C.$\frac{15}{4}$D.$\frac{20}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=\sqrt{2}$,$|{\overrightarrow c}|=\sqrt{3}$,且$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$,則$\overrightarrow a•\overrightarrow b+\overrightarrow b•\overrightarrow c+\overrightarrow c•\overrightarrow a$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.若函數(shù)f(x)在定義域內(nèi)存在實(shí)數(shù)x,滿(mǎn)足f(-x)=-f(x),則稱(chēng)f(x)為“局部奇函數(shù)”.
(1)當(dāng)定義域?yàn)閇-1,1],試判斷f(x)=x4+x3+x2+x-1是否為“局部奇函數(shù)”;
(2)若g(x)=4x-m•2x+1+m2-3為定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)m的范圍;
(3)已知a>1,對(duì)于任意的$b∈[1,\frac{3}{2}]$,函數(shù)h(x)=ln(x+1+a)+x2+x-b都是定義域?yàn)閇-1,1]上的“局部奇函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)e是橢圓$\frac{x^2}{k}+\frac{y^2}{4}=1$的離心率,且$e∈({\frac{1}{2},1})$,則實(shí)數(shù)k的取值范圍是(  )
A.(0,3)B.$({3,\frac{16}{3}})$C.(0,2)D.$({0,3})∪({\frac{16}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列冪函數(shù)中過(guò)點(diǎn)(0,0),(1,1)的偶函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x-1D.y=x3

查看答案和解析>>

同步練習(xí)冊(cè)答案