已知函數(shù)f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,求a,b的值;
(2)當a2=4b時,求函數(shù)f(x)+g(x)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1]上的最大值.
解析 (1)f′(x)=2ax,g′(x)=3x2+b.
因為曲線y=f(x)與曲線y=g(x)在它們的交點(1,c)處具有公共切線,所以f(1)=g(1),且f′(1)=g′(1).
即a+1=1+b,且2a=3+b.
解得a=3,b=3.
(2)記h(x)=f(x)+g(x).當b=a2時,
h(x)=x3+ax2+a2x+1,
h′(x)=3x2+2ax+a2.
令h′(x)=0,得x1=-,x2=-.
當a>0時,h(x)與h′(x)的情況如下:
x |
| - |
| - |
|
h′(x) | + | 0 | - | 0 | + |
h(x) | |
| |
| |
所以函數(shù)h(x)的單調(diào)遞增區(qū)間為和;單調(diào)遞減區(qū)間為.
當-≥-1,即0<a≤2時,
函數(shù)h(x)在區(qū)間(-∞,-1]上單調(diào)遞增,h(x)在區(qū)間(-∞,-1]上的最大值為h(-1)=a-a2.
當-<-1,且-≥-1,即2<a≤6時,
函數(shù)h(x)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,h(x)在區(qū)間(-∞,-1]上的最大值為h=1.
當-<-1,即a>6時,函數(shù)h(x)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增.
又因h(-)-h(-1)=1-a+a2=2>1,
所以h(x)在區(qū)間(-∞,-1]上的最大值為h(-)=1.
科目:高中數(shù)學 來源:2012-2013學年江西省南昌市高一5月聯(lián)考數(shù)學卷(解析版) 題型:解答題
已知函數(shù)f(x)= (a、b為常數(shù)),且方程f(x)-x+12=0有兩個實根為x1=3,x2=4.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式f(x)< .
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆遼寧盤錦市高一第一次階段考試數(shù)學試卷(解析版) 題型:解答題
(12分)已知函數(shù)f(x)= (a,b為常數(shù),且a≠0),滿足f(2)=1,方程f(x)=x有唯一實數(shù)解,求函數(shù)f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省萊蕪市高三上學期10月測試理科數(shù)學 題型:解答題
(本小題滿分l2分)
已知函數(shù)f(x)=a-
(1)求證:函數(shù)y=f(x)在(0,+∞)上是增函數(shù);
(2)若f(x)<2x在(1,+∞)上恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省十二校高三第一次聯(lián)考數(shù)學文卷 題型:解答題
( (本小題滿分13分)
已知函數(shù)f(x)=(a-1)x+aln(x-2),(a<1).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)設(shè)a<0時,對任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆黑龍江省高一期末考試文科數(shù)學 題型:解答題
(12分)已知函數(shù)f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函數(shù)的定義域 (2)討論函數(shù)f(X)的單調(diào)性
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com