如圖,F(xiàn)1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.
解 (1)由題意可知,△AF1F2為等邊三角形,a=2c,
所以e=.
(2)方法一 a2=4c2,b2=3c2,
直線AB的方程為y=-(x-c),
將其代入橢圓方程3x2+4y2=12c2,得B,
所以|AB|=·=c.
由S△AF1B=|AF1|·|AB|·sin∠F1AB=a·c·=a2=40,
解得a=10,b=5.
方法二 設|AB|=t.因為|AF2|=a,所以|BF2|=t-a.
由橢圓定義|BF1|+|BF2|=2a可知,|BF1|=3a-t,
再由余弦定理(3a-t)2=a2+t2-2atcos 60°可得,t=a.
由S△AF1B=a·a·=a2=40 知,
a=10,b=5.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com