17.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3+S6=S9,則公比q=( 。
A.1或-1B.1C.-1D.$\frac{1}{2}$

分析 由已知數(shù)據(jù)易得a1+a2+a3=(a1+a2+a3)q6,解方程可得q.

解答 解:∵等比數(shù)列{an}的前n項(xiàng)和為Sn,且S3+S6=S9,
∴S3+S6=S6+a7+a8+a9,∴S3=a7+a8+a9
∴a1+a2+a3=a7+a8+a9,
∴a1+a2+a3=(a1+a2+a3)q6
∴q6=1,解得q=±1,
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.橢圓$\frac{x^2}{100}$+$\frac{y^2}{64}$=1的兩焦點(diǎn)為F1,F(xiàn)2,P是橢圓上一點(diǎn),滿足∠F1PF2=60°,則三角形F1PF2的面積$\frac{{64\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知A={x|a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B,則實(shí)數(shù)a的取值范圍是(-∞,-4)∪(5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=log2x+$\frac{x}{3}$-3 的零點(diǎn)所在區(qū)間為( 。
A.(0,1)B.)(1,2 )C.( 2,3 )D.( 3,4 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x-1}(x>1)\\ sin\frac{πx}{2}(x≤1)\end{array}\right.$,則f[f(2)]=(  )
A.0B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知a>0,函數(shù)f(x)=ln(2-x)+ax.
(Ⅰ)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,求a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知a、b、c分別為△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊,且bsinA=$\sqrt{3}$acosB.
(1)求B;
(2)若b=3,sinC=2sinA,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知λ∈R,函數(shù)$f(x)=\left\{{\begin{array}{l}{|{x+1}|,x<0}\\{lgx,x>0}\end{array}}\right.$g(x)=x2-4x+1+4λ,若關(guān)于x的方程f(g(x))=λ有6個(gè)解,則λ的取值范圍為( 。
A.$(0,\frac{2}{3})$B.$(\frac{1}{2},\frac{2}{3})$C.$(\frac{2}{5},\frac{1}{2})$D.$(0,\frac{2}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.多項(xiàng)式(x-1)(x-2)(x-3)(x-4)(x-5)的展開(kāi)式中,x4項(xiàng)的系數(shù)=-15,x項(xiàng)的系數(shù)=274.

查看答案和解析>>

同步練習(xí)冊(cè)答案