分析 根據(jù)函數(shù)成立的條件進行求解即可.
解答 解:要使函數(shù)有意義,則tanx-$\sqrt{3}$>0,
即tanx>$\sqrt{3}$,
即kπ+$\frac{π}{3}$<x<kπ+$\frac{π}{2}$,k∈Z
即函數(shù)的定義域為$\left\{{x|kπ+\frac{π}{3}<x<kπ+\frac{π}{2},k∈Z}\right\}$,
故答案為:$\left\{{x|kπ+\frac{π}{3}<x<kπ+\frac{π}{2},k∈Z}\right\}$
點評 本題主要考查函數(shù)定義域的求解,根據(jù)正切函數(shù)的性質(zhì)是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | (-∞,0)∪(1,+∞) | C. | (-∞,0]∪(1,+∞) | D. | (-∞,0)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1>-1 | B. | x2<0 | C. | x3>2 | D. | 0<x2<1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,2) | B. | $(0,\frac{1}{2})$ | C. | [1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{2}$個單位 | B. | 向左平移$\frac{π}{4}$個單位 | ||
C. | 向左平移$\frac{π}{2}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com