9.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點(diǎn)O為圓心,a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過(guò)點(diǎn)F2,則$\frac{{S}_{△O{F}_{1}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值為( 。
A.$\frac{1}{7}$B.$\frac{2}{9}$C.$\frac{1}{6}$D.$\frac{1}{8}$

分析 由題意,線段PF1的垂直平分線恰過(guò)點(diǎn)F2,垂直為D,則yA=$\frac{1}{4}$yp,根據(jù)三角形的面積公式計(jì)算即可.

解答 解:由題意,線段PF1的垂直平分線恰過(guò)點(diǎn)F2,垂直為D,則yD=2yA=$\frac{1}{2}$yp,yA=$\frac{1}{4}$yp,
∴$\frac{{S}_{△O{F}_{1}A}}{{S}_{△P{F}_{1}{F}_{2}}}$=$\frac{\frac{1}{2}c•{y}_{A}}{\frac{1}{2}•2c•{y}_{D}}$=$\frac{1}{8}$,
故選:D.

點(diǎn)評(píng) 本題考查了雙曲線的簡(jiǎn)單性質(zhì)和三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在(x2-4)(x+$\frac{1}{x}$)9的展開式中x5的系數(shù)為(  )
A.36B.-144C.60D.-60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知集合A={x|-3<2x+1<7},集合B={x|y=log2(x-1)},集合C={x|x<a+1}.
(Ⅰ)求A∩B.
(Ⅱ)設(shè)全集為R,若∁R(A∪B)⊆C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.祖暅原理:“冪勢(shì)既同,則積不容異”.它是中國(guó)古代一個(gè)設(shè)計(jì)幾何體體積的問(wèn)題.意思是如果兩個(gè)等高的幾何體在同高處處截得兩幾何體的截面面積恒等,那么這兩個(gè)幾何體的體積相等.設(shè)A,B為兩個(gè)等高的幾何體,p:A,B的體積不相等,q:A,B在同高處的截面面積不恒相等,根據(jù)祖暅原理可知,p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.2π+$\frac{\sqrt{3}}{3}$B.π+$\frac{\sqrt{3}}{3}$C.2π+$\frac{\sqrt{3}}{3}$D.π+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在高中學(xué)習(xí)過(guò)程中,同學(xué)們經(jīng)常這樣說(shuō):“數(shù)學(xué)物理不分家,如果物理成績(jī)好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問(wèn)題.”某班針對(duì)“高中生物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了蘇俄生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系的結(jié)論.現(xiàn)從該班隨機(jī)抽取5名學(xué)生在一次考試中的數(shù)學(xué)和物理成績(jī),如表:
成績(jī)   編號(hào)12345
物理(x)9085746863
數(shù)學(xué)(y)1301251109590
(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$($\widehat$精確到0.1).若某位學(xué)生的物理成績(jī)?yōu)?0分,預(yù)測(cè)他的數(shù)學(xué)成績(jī);
(2)要從抽取的這五位學(xué)生中隨機(jī)選出2位參加一項(xiàng)知識(shí)競(jìng)賽,求選中的學(xué)生的數(shù)學(xué)成績(jī)至少有一位高于120分的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(參考數(shù)據(jù):902+852+742+682+632=29394,90××125+74×110+68×95+63×90=42595)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},則( 。
A.M=PB.P≠M(fèi)C.N∩P≠∅D.M∩N≠∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)a,b均為實(shí)數(shù),則“a>|b|”是“a3>b3”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若等邊△ABC的邊長(zhǎng)為3,平面內(nèi)一點(diǎn)M滿足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{2}$$\overrightarrow{CA}$,則$\overrightarrow{AM}$•$\overrightarrow{BM}$的值為(  )
A.-$\frac{15}{2}$B.-2C.$\frac{15}{2}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案