若數(shù)列{an}的通項公式是an=(-1)n(3n-2),則a1+a2+…+a100=( 。
A、150B、120
C、-120D、-150
考點:數(shù)列的求和
專題:
分析:依題意,可知a1+a2+…+a100=(a1+a2)+(a3+a4)+…+(a99+a100)=(-1+4)+(-7+10)+(-13+16)+…+(-295+298),利用等差數(shù)列的性質(zhì)可得答案.
解答: 解:原式=-1+4-7+10-…-295+298
=(-1+4)+(-7+10)+(-13+16)+…+(-295+298)
=3×50=150.
故選:A.
點評:本題考查數(shù)列的求和,分組求和是關(guān)鍵,考查等價轉(zhuǎn)化思想與運算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列定義:
①對于函數(shù)f(x),若存在x0∈R使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動點;
②若函數(shù)的定義域區(qū)間與值域區(qū)間完全相同,則稱該區(qū)間為函數(shù)的保值區(qū)間.
設(shè)函數(shù)f(x)=x2-2ax+a2+a(x∈R),則該函數(shù)有( 。
A、一個不動點和一個保值區(qū)間
B、兩個不動點和一個保值區(qū)間
C、兩個不動點和兩個保值區(qū)間
D、兩個不動點和三個保值區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[2,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x<0.5,則x取何值時,x(1-2x)的值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=
10x-99
x-10
,{an}為a1=1,d=2的等差數(shù)列,則f(a1)+f(a2)+f(a3)+…+f(a10)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)對于定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍;
(2)設(shè)h(x)=f(x)+g(x)有兩個極值點x1,x2,且x1∈(0,
1
2
),證明:h(x1)-h(x2)>
3
4
-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=
2
,AD=AA1=1,M是A1C1的中點.
(1)求證:CM∥平面A1BD,
(2)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某客運公司確定客票價格的方法是:如果行程不超過100km,票價是0.5元/km,超過100km部分按0.4元/km定價(不滿1km的部分按1km計算),則客運票價y(元)與行程x(km)(x∈Z)之間的函數(shù)關(guān)系式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個邊長為1的正方形及其內(nèi)切圓,現(xiàn)隨機地向該正方形內(nèi)投一粒黃豆(視為一點),則黃豆落入圓內(nèi)的概率為
 

查看答案和解析>>

同步練習(xí)冊答案