12.已知等比數(shù)列{an}滿足a2+a3=$\frac{4}{3}$,a1a4=$\frac{1}{3}$,公比q<1.
(1)求數(shù)列{an}的通項公式與前n項和;
(2)設(shè)bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$,數(shù)列{bnbn+2}的前n項和為Tn,若對于任意的正整數(shù),都有Tn<m2-m+$\frac{3}{4}$成立,求實數(shù)m的取值范圍.

分析 (1)由等比數(shù)列的性質(zhì),a2a3=a1a4=$\frac{1}{3}$,a2+a3=$\frac{4}{3}$,根據(jù)公比q<1,數(shù)列{an}單調(diào)遞減,分別求得a1和q,求得等比數(shù)列的通項公式;
(2)由(1)可知求得數(shù)列{bnbn+2}的通項公式,利用“裂項法“即可求得數(shù)列{bnbn+2}的前n項和為Tn的最大值,將Tn<m2-m+$\frac{3}{4}$轉(zhuǎn)化成$\frac{3}{4}$≤m2-m+$\frac{3}{4}$,即可求得m的取值范圍.

解答 解:(1)由題設(shè)知,a2a3=a1a4=$\frac{1}{3}$,
∵a2+a3=$\frac{4}{3}$,q<1,
解得:a2=1,a3=$\frac{1}{3}$,
q=$\frac{{a}_{3}}{{a}_{2}}$=$\frac{1}{3}$,
∴a1=3,
故an=3×($\frac{1}{3}$)n-1=32-n,
∴數(shù)列{an}前n項和Sn=$\frac{3-{3}^{2-n}×\frac{1}{3}}{1-\frac{1}{3}}$=$\frac{9}{2}$-$\frac{1}{2•{3}^{n-2}}$.(6分)
(2)∵bn=$\frac{1}{2-lo{g}_{3}{a}_{n}}$=$\frac{1}{2-(2-n)}$=$\frac{1}{n}$,
∴bnbn+2=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=b1b3+b2b4+b3b5+…+bnbn+2
=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{2}$-$\frac{1}{4}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{n-1}$-$\frac{1}{n+1}$)+($\frac{1}{n}$-$\frac{1}{n+2}$)],
=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)<$\frac{3}{4}$
故要使Tn<m2-m+$\frac{3}{4}$恒成立,只需$\frac{3}{4}$≤m2-m+$\frac{3}{4}$,
解得m≤0或m≥1.(12分)

點評 本題考查等比數(shù)列通項公式及前n項和公式,考查等比數(shù)列的通項公式的運用,考查“裂項法“求數(shù)列前n項和,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某制造商3月生產(chǎn)了一批乒乓球,隨機抽取100個進(jìn)行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:
分組頻數(shù)頻率
[39.95,39.97)100.10
[39.97,39.99)x0.20
[39.99,40.01)500.50
[40.01,40.03]20y
   合計1001
(1)求出頻率分布表中的x,y,并在圖中補全頻率分布直方圖;
(2)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為40.00mm,試求這批乒乓球的直徑誤差不超過0.03mm的概率;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間[39.99,40.01)的中點值是40.00)作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
    日期11月1日11月2日11月3日11月4日11月5日
溫差x(℃)    8   11  12   13   10
發(fā)芽數(shù)y(顆)   16   25  26   30   23
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an},{bn},{cn},滿足a1=8,b1=10,c1=6,且an+1=an,bn+1=$\frac{{c}_{n}+{a}_{n}}{2}$,cn+1=$\frac{_{n}+{a}_{n}}{2}$,則bn=2×(-$\frac{1}{2}$)n-1+8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知銳角△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若sin A=$\frac{3}{5}$,cos C=$\frac{5}{13}$,a=1,則b=( 。
A.$\frac{13}{21}$B.$\frac{21}{13}$C.$\frac{11}{13}$D.$\frac{13}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.生產(chǎn)甲乙兩種元件,其質(zhì)量按檢測指標(biāo)劃分為:指標(biāo)大于或者等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種元件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計如表:
測試指標(biāo)[70,76)[76,82)[82,88)[88,94)[94,100)
元件甲81240328
元件乙71840296
(Ⅰ)試分別估計元件甲,乙為正品的概率;
(Ⅱ)在(Ⅰ)的前提下,記X為生產(chǎn)1件甲和1件乙所得的正品數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=cos4x-sin4x+2的最小周期是( 。
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a<b<0,則下列不等式中不成立的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.a3<b3D.|a|>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.關(guān)于x的一元二次方程ax2+2x-1=0有兩個不相等正根的充要條件是( 。
A.a<-1B.-1<a<0C.a<0D.0<a<1

查看答案和解析>>

同步練習(xí)冊答案