A. | $\frac{13}{21}$ | B. | $\frac{21}{13}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{11}$ |
分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosA,sinC的值,利用三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可求sinB,進(jìn)而利用正弦定理即可解得b的值.
解答 解:因?yàn)椤鰽BC為銳角三角形,sinA=$\frac{3}{5}$,cosC=$\frac{5}{13}$,
所以cosA=$\frac{4}{5}$,sinC=$\frac{12}{13}$,
于是sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{3}{5}$×$\frac{5}{13}$+$\frac{4}{5}$×$\frac{12}{13}$=$\frac{63}{65}$.
又由$\frac{a}{sinA}$=$\frac{sinB}$,a=1,
可得b=$\frac{asinB}{sinA}$=$\frac{21}{13}$.
故選:B.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 圓心(-2,0),r=4 | B. | 圓心(2,0),r=2 | C. | 圓心(0,2),r=4 | D. | 圓心(0,-2),r=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 殘差就是隨機(jī)誤差 | B. | 殘差就是方差 | ||
C. | 殘差都是正數(shù) | D. | 殘差可用來判斷模型擬合的效果 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com