已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且對(duì)任意的正整數(shù)k,當(dāng)ak+bk≥0時(shí),ak+1=
1
2
ak-
1
4
bk
,bk+1=
3
4
bk
;當(dāng)ak+bk<0時(shí),bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

(1)求數(shù)列{an+bn}的通項(xiàng)公式;
(2)若對(duì)任意的正整數(shù)n,an+bn<0恒成立,問(wèn)是否存在a,b使得{bn}為等比數(shù)列?若存在,求出a,b滿足的條件;若不存在,說(shuō)明理由;
(3)若對(duì)任意的正整數(shù)n,an+bn<0,且b2n=
3
4
b2n+1
,求數(shù)列{bn}的通項(xiàng)公式.
(1)當(dāng)ak+bk≥0時(shí),ak+1=
1
2
ak-
1
4
bk
,bk+1=
3
4
bk
;
∴ak+1+bk+1=
1
2
ak-
1
4
bk+
3
4
bk
=
1
2
(ak+bk)

當(dāng)ak+bk<0時(shí),bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

∴ak+1+bk+1=-
1
4
ak+
1
2
bk+
3
4
ak
=
1
2
(ak+bk)

∴總有ak+1+bk+1=
1
2
(ak+bk)

∵a1=a,b1=b,
∴a1+b1=b+a
∴數(shù)列{an+bn}是以a+b為首項(xiàng),以
1
2
為公比的等比數(shù)列
∴bn+an=(b+a)(
1
2
)n-1
(2)∵an+bn<0恒成立
∴(b+a)(
1
2
)n-1
<0恒成立
∴b+a<0
∵當(dāng)ak+bk<0時(shí),bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

an=a•(
3
4
)n-1

bn=(a+b)•(
1
2
)n-1-a•(
3
4
)n-1
不可能是個(gè)等比數(shù)列
故{bn}不是等比數(shù)列
(3)∵an+bn<0,bk+1=-
1
4
ak+
1
2
bk
,ak+1=
3
4
ak

b2n+1=-
1
4
a2n+
1
2
b2n
a2n+1=
3
4
a2n

b2n=
3
4
b2n+1

b2n+1=
4
3
b2n
=-
1
4
a2n+
1
2
b2n

b2n=-
3
10
a2n
=-
3
10
a•(
3
4
)2n-1

∴bn=-
3a
10
•(
3
4
)n-1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在平面直角坐標(biāo)系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過(guò)點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過(guò)定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書(shū)寫求解或證明過(guò)程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點(diǎn),D(1,0)是它的一個(gè)頂點(diǎn),
d
=(1,
2
)
是它的一條漸近線的一個(gè)方向向量.
(1)求雙曲線C的方程;
(2)若過(guò)點(diǎn)(-3,0)任意作一條直線與雙曲線C交于A,B兩點(diǎn) (A,B都不同于點(diǎn)D),求證:
DA
DB
為定值;
(3)對(duì)于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點(diǎn),M,N為雙曲線Γ上的兩點(diǎn)(都不同于點(diǎn)E),且EM⊥EN,那么直線MN是否過(guò)定點(diǎn)?若是,請(qǐng)求出此定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.然后在以下三個(gè)情形中選擇一個(gè),寫出類似結(jié)論(不要求書(shū)寫求解或證明過(guò)程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點(diǎn);
情形二:拋物線y2=2px(p>0)及它的頂點(diǎn);
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案