科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知滿足約束條件,且恒成立,則的取值范圍為 。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知數(shù)列的首項,且對任意的都有,則 。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:填空題
下列說法正確的是 。
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢人員每20分鐘從中抽取一件產(chǎn)品進行檢測,這樣的抽樣方法為分層抽樣;
(2)兩個隨機變量相關(guān)性越強,相關(guān)系數(shù)的絕對值越接近1,若或時,則與的關(guān)系完全對應(yīng)(即有函數(shù)關(guān)系),在散點圖上各個散點均在一條直線上;
(3)在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
(4)對于回歸直線方程,當(dāng)每增加一個單位時,平均增加12個單位;
(5)已知隨機變量服從正態(tài)分布,若,則。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
在中,角所對的邊分別為,若。
(1)求證;
(2)若的平分線交于,且,求的值。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
哈爾濱市第一次聯(lián)考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為。
|
優(yōu)秀 |
非優(yōu)秀 |
合計 |
甲班 |
10 |
|
|
乙班 |
|
30 |
|
合計 |
|
|
110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
|
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四棱錐中,頂點在底面內(nèi)的射影恰好落在的中點上,又,且
(1)求證:;
(2)若,求直線與所成角的余弦值;
(3)若平面與平面所成的角為,求的值。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線的頂點在坐標(biāo)原點,焦點為,點是點關(guān)于軸的對稱點,過點的直線交拋物線于兩點。
(1)試問在軸上是否存在不同于點的一點,使得與軸所在的直線所成的銳角相等,若存在,求出定點的坐標(biāo),若不存在說明理由。
(2)若的面積為,求向量的夾角;
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線與曲線交于,兩點,求證:。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,已知是圓的直徑,是弦,,垂足為,平分。
(1)求證:直線與圓的相切;
(2)求證:。
查看答案和解析>>
科目: 來源:2012-2013學(xué)年黑龍江省哈爾濱市高三第四次模擬考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
在平面直角坐標(biāo)系中,曲線為為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,。
(1)求,的直角坐標(biāo)方程;
(2)設(shè)與軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com