相關(guān)習(xí)題
 0  139849  139857  139863  139867  139873  139875  139879  139885  139887  139893  139899  139903  139905  139909  139915  139917  139923  139927  139929  139933  139935  139939  139941  139943  139944  139945  139947  139948  139949  139951  139953  139957  139959  139963  139965  139969  139975  139977  139983  139987  139989  139993  139999  140005  140007  140013  140017  140019  140025  140029  140035  140043  266669 

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知定點(diǎn)A(0,t)(t≠0),點(diǎn)M是拋物線y2=x上一動(dòng)點(diǎn),A點(diǎn)關(guān)于M的對(duì)稱點(diǎn)是N.

(1)求N點(diǎn)的軌跡方程;

(2)設(shè)(1)中所求軌跡與拋物線y2=x交于B,C兩點(diǎn),求當(dāng)AB⊥AC時(shí)t的值.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知直線l:y=x+b與曲線C:y=有兩個(gè)公共點(diǎn),求b的取值范圍.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

求直線l:x-y+m=0(m∈R)和曲線y2=2x2+2的交點(diǎn).

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

過拋物線y2=2px(p>0)的頂點(diǎn)O作兩條互相垂直的弦OA、OB,再以O(shè)A、OB為鄰邊作矩形AOBM,如圖,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

討論直線l:y=kx+1與雙曲線C:x2-y2=1的公共點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

如下圖圓O1與圓O2的半徑都等于1,O1O2=4過動(dòng)點(diǎn)P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點(diǎn)),使得|PM|=|PN|,試建立平面直角坐標(biāo)系,并求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

如圖所示,點(diǎn)A(-1,0),B(2,0),動(dòng)點(diǎn)M滿足2∠MAB=∠MBA,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知平面上兩個(gè)定點(diǎn)A、B之間的距離為2a,點(diǎn)M到A、B兩點(diǎn)的距離之比為2∶1,求動(dòng)點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知兩點(diǎn)P(-2,2)、Q(0,2)以及一條直線l:y=x,設(shè)長為的線段AB在直線l上移動(dòng),求直線PA和QB的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目: 來源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:044

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,過它的右焦點(diǎn)F2引傾斜角為的直線l交橢圓于M、N兩點(diǎn),M、N兩點(diǎn)到橢圓右準(zhǔn)線的距離之和為,它的左焦點(diǎn)F1到直線l的距離為,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案