科目: 來源: 題型:解答題
已知拋物線的焦點(diǎn)為,過任作直線(與軸不平行)交拋物線分別于兩點(diǎn),點(diǎn)關(guān)于軸對稱點(diǎn)為,
(1)求證:直線與軸交點(diǎn)必為定點(diǎn);
(2)過分別作拋物線的切線,兩條切線交于,求的最小值,并求當(dāng)取最小值時(shí)直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點(diǎn).設(shè)直線的斜率為.
(Ⅰ)當(dāng)直線平分線段時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
(Ⅲ)對任意,求證:.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,、分別是橢圓的頂點(diǎn),過坐標(biāo)原點(diǎn)的直線交橢圓于、兩點(diǎn),其中在第一象限.過作軸的垂線,垂足為.連接,并延長交橢圓于點(diǎn).設(shè)直線的斜率為.
(Ⅰ)當(dāng)直線平分線段時(shí),求的值;
(Ⅱ)當(dāng)時(shí),求點(diǎn)到直線的距離;
(Ⅲ)對任意,求證:.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線,點(diǎn)P(-1,0)是其準(zhǔn)線與軸的焦點(diǎn),過P的直線與拋物線C交于A、B兩點(diǎn).
(1)當(dāng)線段AB的中點(diǎn)在直線上時(shí),求直線的方程;
(2)設(shè)F為拋物線C的焦點(diǎn),當(dāng)A為線段PB中點(diǎn)時(shí),求△FAB的面積.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)是拋物線上相異兩點(diǎn),到y(tǒng)軸的距離的積為且.
(1)求該拋物線的標(biāo)準(zhǔn)方程.
(2)過Q的直線與拋物線的另一交點(diǎn)為R,與軸交點(diǎn)為T,且Q為線段RT的中點(diǎn),試求弦PR長度的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
給定圓:及拋物線:,過圓心作直線,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次記為,如果線段的長按此順序構(gòu)成一個(gè)等差數(shù)列,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓()右頂點(diǎn)到右焦點(diǎn)的距離為,短軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若線段的長為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓()右頂點(diǎn)與右焦點(diǎn)的距離為,短軸長為.
(I)求橢圓的方程;
(II)過左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若三角形的面積為,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時(shí),求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com