科目: 來源: 題型:解答題
橢圓的離心率為,兩焦點分別為,點是橢圓C上一點,的周長為16,設(shè)線段MO(O為坐標(biāo)原點)與圓交于點N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點在橢圓C上運動時,判斷直線與圓O的位置關(guān)系.
查看答案和解析>>
科目: 來源: 題型:解答題
已知M (-3,0)﹑N (3,0),P為坐標(biāo)平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)m (m,m0),點P的軌跡加上M、N兩點構(gòu)成曲線C.
求曲線C的方程并討論曲線C的形狀;
(2) 若,曲線C過點Q (2,0) 斜率為的直線與曲線C交于不同的兩點A﹑B,AB中點為R,直線OR (O為坐標(biāo)原點)的斜率為,求證 為定值;
(3) 在(2)的條件下,設(shè),且,求在y軸上的截距的變化范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知直線l:y=kx+2(k為常數(shù))過橢圓+=1(a>b>0)的上頂點B和左焦點F,直線l被圓x2+y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d≥,求橢圓離心率e的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
在平面直角坐標(biāo)系中,動點到兩點,的距離之和等于,設(shè)點的軌跡為曲線,直線過點且與曲線交于,兩點.
(1)求曲線的軌跡方程;
(2)是否存在△面積的最大值,若存在,求出△的面積;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:解答題
已知拋物線的焦點與橢圓的右焦點重合.(Ⅰ)求拋物線的方程;
(Ⅱ)動直線恒過點與拋物線交于A、B兩點,與軸交于C點,請你觀察并判斷:在線段MA,MB,MC,AB中,哪三條線段的長總能構(gòu)成等比數(shù)列?說明你的結(jié)論并給出證明.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓具有性質(zhì):若是橢圓:且為常數(shù)上關(guān)于原點對稱的兩點,點是橢圓上的任意一點,若直線和的斜率都存在,并分別記為,,那么與之積是與點位置無關(guān)的定值.
試對雙曲線且為常數(shù)寫出類似的性質(zhì),并加以證明.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知拋物線的焦點為,過焦點且不平行于軸的動直線交拋物線于,兩點,拋物線在、兩點處的切線交于點.
(Ⅰ)求證:,,三點的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點,求四邊形面積的最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
設(shè)橢圓:的離心率為,點、,原點到直線的距離為.
(1)求橢圓的方程;
(2)設(shè)點,點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的左右焦點分別為、,由4個點、、和組成一個高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過點的直線和橢圓交于、兩點,求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知橢圓C:(a>b>0),則稱以原點為圓心,r=的圓為橢圓C的“知己圓”。
(Ⅰ)若橢圓過點(0,1),離心率e=;求橢圓C方程及其“知己圓”的方程;
(Ⅱ)在(Ⅰ)的前提下,若過點(0,m)且斜率為1的直線截其“知己圓”的弦長為2,求m的值;
(Ⅲ)討論橢圓C及其“知己圓”的位置關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com