相關(guān)習(xí)題
 0  155808  155816  155822  155826  155832  155834  155838  155844  155846  155852  155858  155862  155864  155868  155874  155876  155882  155886  155888  155892  155894  155898  155900  155902  155903  155904  155906  155907  155908  155910  155912  155916  155918  155922  155924  155928  155934  155936  155942  155946  155948  155952  155958  155964  155966  155972  155976  155978  155984  155988  155994  156002  266669 

科目: 來(lái)源: 題型:解答題

某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫(xiě)程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù).
甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
14
6
10




2 100
1 027
376
697
 
乙的頻數(shù)統(tǒng)計(jì)表(部分)
運(yùn)行次數(shù)n
輸出y的值
為1的頻數(shù)
輸出y的值
為2的頻數(shù)
輸出y的值
為3的頻數(shù)
30
12
11
7




2 100
1 051
696
353
 
當(dāng)n=2 100時(shí),根據(jù)表中的數(shù)據(jù),分別寫(xiě)出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷兩位同學(xué)中哪一位所編程序符合算法要求的可能性較大;
(3)將按程序框圖正確編寫(xiě)的程序運(yùn)行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

受轎車(chē)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車(chē)的利潤(rùn)與該轎車(chē)首次出現(xiàn)故障的時(shí)間有關(guān).某轎車(chē)制造廠生產(chǎn)甲、乙兩種品牌轎車(chē),保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車(chē)中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:

品牌

 
 

 
首次出現(xiàn)故障時(shí)間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車(chē)數(shù)量(輛)
2
3
45
5
45
每輛利潤(rùn)(萬(wàn)元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問(wèn)題:
(1)從該廠生產(chǎn)的甲品牌轎車(chē)中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車(chē)均能售出,記生產(chǎn)一輛甲品牌轎車(chē)的利潤(rùn)為X1,生產(chǎn)一輛乙品牌轎車(chē)的利潤(rùn)為X2,分別求X1,X2的分布列;
(3)該廠預(yù)計(jì)今后這兩種品牌轎車(chē)銷(xiāo)量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車(chē).若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車(chē)?說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(1)求此人到達(dá)當(dāng)日空氣質(zhì)量?jī)?yōu)良的概率;
(2)求此人在該市停留期間只有1天空氣重度污染的概率;
(3)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

     休閑方式
性別  
看電視
看書(shū)
合計(jì)

10
50
60

10
10
20
合計(jì)
20
60
80
 
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書(shū)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),我們能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“在20:00-22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0)
0.15
0.10
0.05
0.025
0.010
k0
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

現(xiàn)有4個(gè)人去參加某娛樂(lè)活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇,為增加趣味性,約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去參加哪個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.
(1)求這4個(gè)人中恰有2人去參加甲游戲的概率;
(2)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記ξ=|X Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

在一個(gè)盒子中,放有標(biāo)號(hào)分別為1,2,3的三張卡片,現(xiàn)從這個(gè)盒子中,有放回地先后抽得兩張卡片的標(biāo)號(hào)分別為x、y,設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)P的坐標(biāo)為.
(1)求隨機(jī)變量 的最大值,并求事件“取得最大值”的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

甲、乙二人參加知識(shí)競(jìng)答,共有10個(gè)不同的題目,其中選擇題6個(gè),判斷題4個(gè),甲、乙二人依次各抽一題,那么
(1)甲抽到選擇題,乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一個(gè)抽到選擇題的概率是多少?

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

“光盤(pán)行動(dòng)”倡導(dǎo)厲行節(jié)約,反對(duì)鋪張浪費(fèi),帶動(dòng)大家珍惜糧食,吃光盤(pán)子中的食物,得到從中央到民眾的支持,為了解某地響應(yīng)“光盤(pán)行動(dòng)”的實(shí)際情況,某校幾位同學(xué)組成研究性學(xué)習(xí)小組,從某社區(qū)歲的人群中隨機(jī)抽取n人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:

(1)求a,b的值,并估計(jì)本社區(qū)歲的人群中“光盤(pán)族”所占比例;
(2)從年齡段在的“光盤(pán)族”中,采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì).
(1)已知選取2人中1人來(lái)自中的前提下,求另一人來(lái)自年齡段中的概率;
(2)求2名領(lǐng)隊(duì)的年齡之和的期望值(每個(gè)年齡段以中間值計(jì)算).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

某中學(xué)將100名高一新生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A、B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下.記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.


 

6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5
 
(1)在乙班樣本中的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并判斷是否有90%的把握認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
 
甲班(A方式)
乙班(B方式)
總計(jì)
成績(jī)優(yōu)秀
 
 
 
成績(jī)不優(yōu)秀
 
 
 
總計(jì)
 
 
 
 
附:,其中n=a+b+c+d.)
 P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
   k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

一種電腦屏幕保護(hù)畫(huà)面,只有符號(hào)隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)之一,其中出現(xiàn)的概率為p,出現(xiàn)的概率為q,若第k次出現(xiàn),則記;出現(xiàn),則記,令
(1)當(dāng)時(shí),求的分布列及數(shù)學(xué)期望.
(2)當(dāng)時(shí),求的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案