相關(guān)習(xí)題
 0  155865  155873  155879  155883  155889  155891  155895  155901  155903  155909  155915  155919  155921  155925  155931  155933  155939  155943  155945  155949  155951  155955  155957  155959  155960  155961  155963  155964  155965  155967  155969  155973  155975  155979  155981  155985  155991  155993  155999  156003  156005  156009  156015  156021  156023  156029  156033  156035  156041  156045  156051  156059  266669 

科目: 來源: 題型:解答題

某廠生產(chǎn)的產(chǎn)品在出廠前都要做質(zhì)量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現(xiàn)有10件產(chǎn)品,其中6件是一等品,4件是二等品.
(1)隨機(jī)選取1件產(chǎn)品,求能夠通過檢測的概率;
(2)隨機(jī)選取3件產(chǎn)品,其中一等品的件數(shù)記為,求的分布列;
(3)隨機(jī)選取3件產(chǎn)品,求這三件產(chǎn)品都不能通過檢測的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

在一個(gè)盒子中,放有大小相同的紅、白、黃三個(gè)小球,現(xiàn)從中任意摸出一球,若是紅球記1分,白球記2分,黃球記3分.現(xiàn)從這個(gè)盒子中有放回地先后摸出兩球,所得分?jǐn)?shù)分別記為、,設(shè)為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,記
(1)求隨機(jī)變量=5的概率;
(2)求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

中國航母“遼寧艦”是中國第一艘航母,“遼寧”號以4臺(tái)蒸汽輪機(jī)為動(dòng)力,為保證航母的動(dòng)力安全性,科學(xué)家對蒸汽輪機(jī)進(jìn)行了170余項(xiàng)技術(shù)改進(jìn),增加了某項(xiàng)新技術(shù),該項(xiàng)新技術(shù)要進(jìn)入試用階段前必須對其中的三項(xiàng)不同指標(biāo)甲、乙、丙進(jìn)行通過量化檢測.假如該項(xiàng)新技術(shù)的指標(biāo)甲、乙、丙獨(dú)立通過檢測合格的概率分別為、.指標(biāo)甲、乙、丙合格分別記為4分、2分、4分;若某項(xiàng)指標(biāo)不合格,則該項(xiàng)指標(biāo)記0分,各項(xiàng)指標(biāo)檢測結(jié)果互不影響.
(I)求該項(xiàng)技術(shù)量化得分不低于8分的概率;
(II)記該項(xiàng)新技術(shù)的三個(gè)指標(biāo)中被檢測合格的指標(biāo)個(gè)數(shù)為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

某市直小學(xué)為了加強(qiáng)管理,對全校教職工實(shí)行新的臨時(shí)事假制度:“每位教職工每月在正常的工作時(shí)間,臨時(shí)有事,可請假至多三次,每次至多一小時(shí)”.現(xiàn)對該制度實(shí)施以來50名教職工請假的次數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),結(jié)果如下表所示:

請假次數(shù)




人數(shù)




根據(jù)上表信息解答以下問題:
(1)從該小學(xué)任選兩名教職工,用表示這兩人請假次數(shù)之和,記“函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn)”為事件,求事件發(fā)生的概率
(2)從該小學(xué)任選兩名職工,用表示這兩人請假次數(shù)之差的絕對值,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

2012年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》。其中規(guī)定:居民區(qū)的PM2.5(大氣中直徑小于或等于2.5微米的顆粒物)年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米。某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年20天PM2.5的24小時(shí)平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:

組別
PM2.5濃度
(微克/立方米
頻數(shù)(天)
頻率
第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的5天中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)用樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn)?說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

為普及高中生安全逃生知識(shí)與安全防護(hù)能力,某學(xué)校高一年級舉辦了高中生安全知識(shí)與安全逃生能力競賽. 該競賽分為預(yù)賽和決賽兩個(gè)階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.

分?jǐn)?shù)(分?jǐn)?shù)段)
頻數(shù)(人數(shù))
頻率
[60,70)


[70,80)


[80,90)


 [90,100)


合  計(jì)


(Ⅰ)求出上表中的的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一·二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一·二班在決賽中進(jìn)入前三名的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:解答題

某班數(shù)學(xué)興趣小組有男生3名,記為,女生2名,記為,現(xiàn)從中任選2名學(xué)生去參加校數(shù)學(xué)競賽
⑴寫出所有的基本事件
⑵求參賽學(xué)生中恰好有一名男生的概率
⑶求參賽學(xué)生中至少有一名男生的概率

查看答案和解析>>

科目: 來源: 題型:解答題

一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為
40秒,當(dāng)你到達(dá)路口時(shí)看見下列三種情況的概率各是多少?
(1) 紅燈     (2) 黃燈   (3) 不是紅燈

查看答案和解析>>

科目: 來源: 題型:解答題

某單位為了參加上級組織的普及消防知識(shí)競賽,需要從兩名選手中選出一人參加.為此,設(shè)計(jì)了一個(gè)挑選方案:選手從6道備選題中一次性隨機(jī)抽取3題.通過考察得知:6道備選題中選手甲有4道題能夠答對,2道題答錯(cuò);選手乙答對每題的概率都是,且各題答對與否互不影響.設(shè)選手甲、選手乙答對的題數(shù)分別為ξ,η.
(1)寫出ξ的概率分布列,并求出E(ξ),E(η);
(2)求D(ξ),D(η).請你根據(jù)得到的數(shù)據(jù),建議該單位派哪個(gè)選手參加競賽?

查看答案和解析>>

科目: 來源: 題型:解答題

袋中有紅、黃、白三種顏色的球各一個(gè),從中每次取一只,有放回的抽取三次,
求:(1)3只球顏色全相同的概率;
(2)3只球顏色不全相同的概率;
(3)3只球顏色全不相同的概率.

查看答案和解析>>

同步練習(xí)冊答案