相關習題
 0  156131  156139  156145  156149  156155  156157  156161  156167  156169  156175  156181  156185  156187  156191  156197  156199  156205  156209  156211  156215  156217  156221  156223  156225  156226  156227  156229  156230  156231  156233  156235  156239  156241  156245  156247  156251  156257  156259  156265  156269  156271  156275  156281  156287  156289  156295  156299  156301  156307  156311  156317  156325  266669 

科目: 來源: 題型:填空題

設等差數(shù)列{an}的前n項和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數(shù)列,類比以上結論有:設等比數(shù)列{bn}的前n項積為Tn,則T4,    ,    ,成等比數(shù)列.

查看答案和解析>>

科目: 來源: 題型:填空題

已知P(x0,y0)是拋物線y2=2px(p>0)上的一點,過P點的切線方程的斜率可通過如下方式求得:
在y2=2px兩邊同時求導,得:
2yy'=2p,則y'=,所以過P的切線的斜率:k=.
試用上述方法求出雙曲線x2-=1在P(,)處的切線方程為    .

查看答案和解析>>

科目: 來源: 題型:填空題

設函數(shù)f(x)=(x>0),觀察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,故fn(x)=     .

查看答案和解析>>

科目: 來源: 題型:填空題

觀察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)上述規(guī)律,第五個等式為    .

查看答案和解析>>

科目: 來源: 題型:填空題

)在計算“1×2+2×3+…+n(n+1)”時,某同學學到了如下一種方法:先改寫第k項:
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
類比上述方法,請你計算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結果為    .

查看答案和解析>>

科目: 來源: 題型:填空題

將連續(xù)整數(shù)1,2,…,25填入如圖所示的5行5列的表格中,使每一行的數(shù)從左到右都成遞增數(shù)列,則第三列各數(shù)之和的最小值為    ,最大值為    .

查看答案和解析>>

科目: 來源: 題型:填空題

已知=2,=3,=4,…,若=7,(a,t均為正實數(shù)),則類比以上等式,可推測a、t的值,a+t=   

查看答案和解析>>

科目: 來源: 題型:填空題

設等差數(shù)列{an}的前n項和為Sn,則S4,S8-S4,S12-S8,S16-S12成等差數(shù)列.類比以上結論有:設等比數(shù)列{bn}的前n項積為Tn,則T4,   ,   ,成等比數(shù)列.

查看答案和解析>>

科目: 來源: 題型:填空題

在平面上,若兩個正三角形的邊長比為1∶2,則它們的面積比為1∶4,類似地,在空間中,若兩個正四面體的棱長比為1∶2,則它們的體積比為    .

查看答案和解析>>

科目: 來源: 題型:填空題

在如下數(shù)表中,已知每行、每列中的數(shù)都成等差數(shù)列,

 
第1列
第2列
第3列

第1行
1
2
3

第2行
2
4
6

第3行
3
6
9






那么位于表中的第n行第n+1列的數(shù)是    .

查看答案和解析>>

同步練習冊答案