相關(guān)習(xí)題
 0  157878  157886  157892  157896  157902  157904  157908  157914  157916  157922  157928  157932  157934  157938  157944  157946  157952  157956  157958  157962  157964  157968  157970  157972  157973  157974  157976  157977  157978  157980  157982  157986  157988  157992  157994  157998  158004  158006  158012  158016  158018  158022  158028  158034  158036  158042  158046  158048  158054  158058  158064  158072  266669 

科目: 來源:不詳 題型:單選題

設(shè)函數(shù),則函數(shù)的零點(diǎn)的個(gè)數(shù)為(     )
A.4B.5C.6D.7

查看答案和解析>>

科目: 來源:不詳 題型:解答題

有一批貨物需要用汽車從生產(chǎn)商所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時(shí)間互不影響。
據(jù)調(diào)查統(tǒng)計(jì),通過這兩條公路從城市甲到城市乙的200輛汽車所用時(shí)間的頻數(shù)分布如下表:
所用的時(shí)間(天數(shù))
10
11
12
13
通過公路1的頻數(shù)
20
40
20
20
通過公路2的頻數(shù)
10
40
40
10
假設(shè)汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā)。
(1)為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物運(yùn)往城市乙,估計(jì)汽車A和汽車B應(yīng)如何選擇各自的路徑;
(2)若通過公路1、公路2的“一次性費(fèi)用”分別為3.2萬元、1.6萬元(其它費(fèi)用忽略不計(jì)),此項(xiàng)費(fèi)用由生產(chǎn)商承擔(dān)。如果生產(chǎn)商恰能在約定日期當(dāng)天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天銷售商將少支付給生產(chǎn)商2萬元。如果汽車A、B長期按(1)所選路徑運(yùn)輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大。
(注:毛利潤=(銷售商支付給生產(chǎn)商的費(fèi)用)—(一次性費(fèi)用))

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù) 
(I)當(dāng)時(shí),求在[1,]上的取值范圍。
(II)若在[1,]上為增函數(shù),求a的取值范圍。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù) 
(I) 解關(guān)于的不等式
(II)若函數(shù)的圖象恒在函數(shù)的上方,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知:,當(dāng)時(shí),;
時(shí),
(1)求的解析式
(2)c為何值時(shí),的解集為R.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013009897303.png" style="vertical-align:middle;" />的偶函數(shù),對,有,且當(dāng) 時(shí),,若函數(shù)上至少有三個(gè)零點(diǎn),則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)時(shí), (為常數(shù)),則(      )    
A.3B.1C.-1D.-3

查看答案和解析>>

科目: 來源:不詳 題型:解答題

對于函數(shù) 
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知函數(shù)的圖象在與軸交點(diǎn)處的切線方程是.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),若的極值存在,求實(shí)數(shù)的取值范圍以及當(dāng)取何值時(shí)函數(shù)分別取得極大和極小值.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

定義在上的函數(shù)同時(shí)滿足性質(zhì):①對任何,均有成立;②對任何,當(dāng)且僅當(dāng)時(shí),有.則的值為                .

查看答案和解析>>

同步練習(xí)冊答案