相關(guān)習(xí)題
 0  168489  168497  168503  168507  168513  168515  168519  168525  168527  168533  168539  168543  168545  168549  168555  168557  168563  168567  168569  168573  168575  168579  168581  168583  168584  168585  168587  168588  168589  168591  168593  168597  168599  168603  168605  168609  168615  168617  168623  168627  168629  168633  168639  168645  168647  168653  168657  168659  168665  168669  168675  168683  266669 

科目: 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分6分,第2小題滿分6分,第3小題滿分6分.
已知橢圓,常數(shù)、,且
(1)當(dāng)時,過橢圓左焦點的直線交橢圓于點,與軸交于點,若,求直線的斜率;
(2)過原點且斜率分別為)的兩條直線與橢圓的交點為(按逆時針順序排列,且點位于第一象限內(nèi)),試用表示四邊形的面積;
(3)求的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓過點,長軸長為,過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(1)求橢圓的方程;
(2)若線段AB中點的橫坐標(biāo)是求直線l的斜率;
(3)在x軸上是否存在點M,使是與k無關(guān)的常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.
(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);
(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);
(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換
)下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分、第3小題滿分6分.
已知的頂點在橢圓上,在直線上,

(1)求邊中點的軌跡方程;
(2)當(dāng)邊通過坐標(biāo)原點時,求的面積;
(3)當(dāng),且斜邊的長最大時,求所在直線的方程.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知是橢圓的兩個焦點,是橢圓上的任意一點,則的最大值是                              (     )
、9        、16            、

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知橢圓的中心在坐標(biāo)原點,焦點在x軸上,以其兩個焦點和短軸的兩個端點為頂點的
四邊形是一個面積為4的正方形,設(shè)P為該橢圓上的動點,CD的坐標(biāo)分別是,則PC·PD的最大值為   

查看答案和解析>>

科目: 來源:不詳 題型:填空題

若橢圓上存在一點M,它到左焦點的距離是它到右準(zhǔn)線距離的2倍,則橢圓離心率的最小值為       .

查看答案和解析>>

科目: 來源:不詳 題型:填空題

已知是以,為焦點的橢圓上的一點,若,,則此橢圓的離心率為____________.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)
已知圓和圓,直線與圓相切于點;圓的圓心在射線上,圓過原點,且被直線截得的弦長為
(Ⅰ)求直線的方程;
(Ⅱ)求圓的方程.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,橢圓經(jīng)過點,離心率。

(l)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點,點關(guān)于軸的對稱點為不重合),則直線軸是否交于一個定點?若是,請寫出定點坐標(biāo),并證明你的結(jié)論;若不是,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案