相關(guān)習(xí)題
 0  169319  169327  169333  169337  169343  169345  169349  169355  169357  169363  169369  169373  169375  169379  169385  169387  169393  169397  169399  169403  169405  169409  169411  169413  169414  169415  169417  169418  169419  169421  169423  169427  169429  169433  169435  169439  169445  169447  169453  169457  169459  169463  169469  169475  169477  169483  169487  169489  169495  169499  169505  169513  266669 

科目: 來源:不詳 題型:單選題

已知雙曲線的一條準(zhǔn)線與拋物線的準(zhǔn)線重合,則該雙曲線的離心率為                                 (        )
A     B                      C                    D 

查看答案和解析>>

科目: 來源:不詳 題型:解答題

設(shè)直線. 若直線l與曲線S同時(shí)滿足下列兩個(gè)條件:①直線l與曲線S相切且至少有兩個(gè)切點(diǎn);②對(duì)任意xR都有. 則稱直線l為曲線S的“上夾線”.
⑴已知函數(shù).求證:為曲線的“上夾線”.
⑵觀察下圖:
          
根據(jù)上圖,試推測曲線的“上夾線”的方程,并給出證明.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

設(shè)F1、F2為曲線C1的焦點(diǎn),P是曲線C2與C1的一個(gè)交點(diǎn),則的值為        

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知A(-2,0),B(2,0),動(dòng)點(diǎn)P與A、B兩點(diǎn)連線的斜率分別為,且滿足·="t" (t≠0且t≠-1).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)當(dāng)t<0時(shí),曲線C的兩焦點(diǎn)為F1,F(xiàn)2,若曲線C上存在點(diǎn)Q使得∠F1QF2=120O,
求t的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)在平面直角坐標(biāo)系中,已知,),,O為坐標(biāo)原點(diǎn),若實(shí)數(shù)使向量,滿足:,設(shè)點(diǎn)P的軌跡為
(Ⅰ)求的方程,并判斷是怎樣的曲線;
(Ⅱ)當(dāng)時(shí),過點(diǎn)且斜率為1的直線與相交的另一個(gè)交點(diǎn)為,能否在直線上找到一點(diǎn),恰使為正三角形?請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)已知兩點(diǎn)M(-1,0), N(1, 0), 且點(diǎn)P使成公差小于零的等差數(shù)列.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(x0, y0), 記θ為,的夾角, 求

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分15分)已知O為坐標(biāo)原點(diǎn),點(diǎn)A、B分別在x軸,y軸上運(yùn)動(dòng),且|AB|=8,動(dòng)點(diǎn)P滿足,設(shè)點(diǎn)P的軌跡為曲線C,定點(diǎn)為M(4,0),直線PM交曲線C于另外一點(diǎn)Q.(1)求曲線C的方程;(2)求△OPQ積的最大值.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知?jiǎng)狱c(diǎn)P到兩個(gè)定點(diǎn)的距離之和為,則點(diǎn)P軌跡的離心率的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(12分)已知定點(diǎn)A(0,1),B(0,-1),C(1,0).動(dòng)點(diǎn)P滿足:.
(I)求動(dòng)點(diǎn)P的軌跡方程,并說明方程表示的曲線類型;
(II)當(dāng)時(shí),求的最大、最小值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

定長為3的線段兩端點(diǎn)分別在軸,軸上滑動(dòng),在線段上,且
(1)求點(diǎn)的軌跡的方程.
(2)設(shè)過且不垂直于坐標(biāo)軸的直線交軌跡兩點(diǎn).問:線段上是否存在一點(diǎn),使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案