相關(guān)習(xí)題
 0  171193  171201  171207  171211  171217  171219  171223  171229  171231  171237  171243  171247  171249  171253  171259  171261  171267  171271  171273  171277  171279  171283  171285  171287  171288  171289  171291  171292  171293  171295  171297  171301  171303  171307  171309  171313  171319  171321  171327  171331  171333  171337  171343  171349  171351  171357  171361  171363  171369  171373  171379  171387  266669 

科目: 來源:不詳 題型:填空題

某高校設(shè)計了一個實驗學(xué)科的實驗考查方案:考生從6道備選題中一次性隨機抽取3題,按照題目要求獨立完成全部實驗操作; 其中6道備選題中考生甲有4題能正確完成,2題不能完成,則甲考生能正確完成題數(shù)的數(shù)學(xué)期望為               

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
在平面內(nèi),不等式確定的平面區(qū)域為,不等式組確定的平面區(qū)域為.
(Ⅰ)定義橫、縱坐標(biāo)為整數(shù)的點為“整點”. 在區(qū)域任取3個整點,求這些整點中恰有2個整點在區(qū)域的概率;
(Ⅱ)在區(qū)域每次任取個點,連續(xù)取次,得到個點,記這個點在區(qū)域的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

. 設(shè)l為平面上過點(0,l)的直線,l的斜率等可能地取、、、0、、、,用ξ表示坐標(biāo)原點到直線l的距離,則隨機變量ξ的數(shù)學(xué)期望Eξ=_________.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

甲、乙二人進行一次圍棋比賽,約定先勝局者獲得這次比賽的勝利,比賽結(jié)束.假設(shè)在一局比賽中,甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨立.現(xiàn)知前局中,甲、乙各勝局,設(shè)表示從第局開始到比賽結(jié)束所進行的局?jǐn)?shù),則的數(shù)學(xué)期望為             

查看答案和解析>>

科目: 來源:不詳 題型:填空題

某車站每天8∶00—9∶00,9∶00—10∶00都恰有一輛客車到站,但到站的時刻是隨機的,且兩者到站的時間是相互獨立的,其規(guī)律為
到站時刻
8∶10
9∶10
8∶30
9∶30
8∶50
9∶50
概率



一旅客8∶20到車站,則它候車時間的數(shù)學(xué)期望為                   

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,甲產(chǎn)品的一等品率為,二等品率為;乙產(chǎn)品的一等品率為,二等品率為.生產(chǎn)件甲產(chǎn)品,若是一等品,則獲利萬元,若是二等品,則虧損萬元;生產(chǎn)件乙產(chǎn)品,若是一等品,則獲利萬元,若是二等品,則虧損
元.兩種產(chǎn)品生產(chǎn)的質(zhì)量相互獨立.
(Ⅰ)設(shè)生產(chǎn)件甲產(chǎn)品和件乙產(chǎn)品可獲得的總利潤為(單位:萬元),求的分布列;
(Ⅱ)求生產(chǎn)件甲產(chǎn)品所獲得的利潤不少于萬元的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(12分)(Ⅰ)小問5分,(Ⅱ)小問7分)
安排四個大學(xué)生到A、B、C三個學(xué)校支教,設(shè)每個大學(xué)生去任何一個學(xué)校是等可能的.
(1)求四個大學(xué)生中恰有兩人去A校支教的概率.
(2)設(shè)有大學(xué)生去支教的學(xué)校的個數(shù)為,求的分布列.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

袋中有6個同樣大小的球,編號為1,2,3,4,5,6,現(xiàn)從中隨機取出3個球,以X表示取出球的最小號碼,則X的數(shù)學(xué)期望 E(X)= _______

查看答案和解析>>

科目: 來源:不詳 題型:填空題

一離散型隨機變量的概率分布列如下,且          

0
1
2
3

0.1


0.1

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
一個口袋內(nèi)有()個大小相同的球,其中有3個紅球和個白球.已知從口袋中隨機取出一個球是紅球的概率是
(1)當(dāng)時,不放回地從口袋中隨機取出3個球,求取到白球的個數(shù)的期望;
(2)若,有放回地從口袋中連續(xù)地取四次球(每次只取一個球),在四次摸球中恰好取到兩次紅球的概率大于,求

查看答案和解析>>

同步練習(xí)冊答案