相關(guān)習(xí)題
 0  201291  201299  201305  201309  201315  201317  201321  201327  201329  201335  201341  201345  201347  201351  201357  201359  201365  201369  201371  201375  201377  201381  201383  201385  201386  201387  201389  201390  201391  201393  201395  201399  201401  201405  201407  201411  201417  201419  201425  201429  201431  201435  201441  201447  201449  201455  201459  201461  201467  201471  201477  201485  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=3x+x-3的零點(diǎn)為x1,函數(shù)g(x)=log3x+x-3的零點(diǎn)為x2,則x1+x2=
 

查看答案和解析>>

科目: 來源: 題型:

用二分法求方程近似解的過程中,已知在區(qū)間[a,b]上,f(a)>0,f(b)<0,并計(jì)算得到f(
a+b
2
)<0,那么下一步要計(jì)算的函數(shù)值為( 。
A、f(
3a+b
4
B、f(
a+3b
4
C、f(
a+b
4
D、f(
3a+3b
4

查看答案和解析>>

科目: 來源: 題型:

某工廠去年初完成了生產(chǎn)設(shè)備的升級(jí),它每年的總產(chǎn)量y(萬噸)與設(shè)備升級(jí)后的時(shí)間x(年)的函數(shù)關(guān)系近似地符合函數(shù)模型y=a
x
+b,已知該廠去年、今年的總產(chǎn)量分別為440(萬噸)、240
2
+200 (萬噸),則明年的總產(chǎn)量約為
 
(萬噸).

查看答案和解析>>

科目: 來源: 題型:

京廣高鐵的貫通,帶動(dòng)了沿線某站點(diǎn)所在市旅游業(yè)的發(fā)展.在車站附近,有一塊邊長(zhǎng)為100m的正方形地皮,如圖ABCD所示,其中AST是一半徑為90m的扇形小山,其余部分都是平地.市政府決定在平地上建一個(gè)矩形停車場(chǎng),使矩形的一個(gè)頂點(diǎn)P在弧ST上,相鄰兩邊CQ、CR落在正方形的邊BC、CD上.求矩形停車場(chǎng)PQCR面積S的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:

甲乙兩地相距s千米,一船由甲地逆水行駛至乙地,水速為常量p(單位:千米/小時(shí))船在靜水中的最大速度為q千米/小時(shí)(q>p),已知輪船每小時(shí)的燃料費(fèi)用(單位:元)與船在靜水中的速度v (單位:千米/小時(shí))的平方成正比,比例系數(shù)為k.
(1)把全程燃料費(fèi)用y(單位:元)表示為船在靜水中的速度v的函數(shù),并求出這個(gè)函數(shù)的定義域;
(2)為了使全程燃料費(fèi)用最小,船的實(shí)際前進(jìn)速度為多少?

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(x-k)2e
x
k
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx-ax+
1-a
x
-1(a∈R),討論該函數(shù)的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=lnx+2x,則f(x)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3=ax2-4x+3(x∈R).
(1)當(dāng)a=2時(shí)求f(x)在點(diǎn)(1,f(1))處的切線方程
(2)若函數(shù)f(x)在區(qū)間(1,2)上為減函數(shù),求實(shí)數(shù)a的取值范圍..

查看答案和解析>>

科目: 來源: 題型:

定義在R上的函數(shù)f(x),g(x)的導(dǎo)函數(shù)分別為f′(x),g′(x)且f′(x)<g′(x).則下列結(jié)論一定成立的是( 。
A、f(1)+g(0)<g(1)+f(0)
B、f(1)+g(0)>g(1)+f(0)
C、f(1)-g(0)>g(1)-f(0)
D、f(1)-g(0)<g(1)-f(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案