相關(guān)習(xí)題
 0  201395  201403  201409  201413  201419  201421  201425  201431  201433  201439  201445  201449  201451  201455  201461  201463  201469  201473  201475  201479  201481  201485  201487  201489  201490  201491  201493  201494  201495  201497  201499  201503  201505  201509  201511  201515  201521  201523  201529  201533  201535  201539  201545  201551  201553  201559  201563  201565  201571  201575  201581  201589  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=
3
2
sinx+
1
2
cosx,則f(
π
12
)=( 。
A、
2
2
B、
3
2
C、1
D、
2

查看答案和解析>>

科目: 來源: 題型:

函數(shù)y=Asin(ωx+Φ)+k(A>0,ω>0,|Φ|<
π
2
)的圖象如圖所示,則y的表達(dá)式是( 。
A、y=
3
2
sin(2x+
π
3
)+1
B、y=
3
2
sin(2x-
π
3
)+1
C、y=
3
2
sin(2x+
π
3
)-1
D、y=sin(2x+
π
3
)+1

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=5sinx•cosx-5
3
cos2x+
5
2
3
(x∈R).求:
(1)f(x)的最小正周期;
(2)f(x)的單調(diào)區(qū)間;
(3)f(x)的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

銳角三角形ABC中,邊a,b是方程x2-2
3
x+2=0的兩根,角A,B滿足2sin(A+B)-
3
=0,求:
(1)角C的度數(shù);
(2)邊c的長度及△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-cos2x.
(1)將f(x)化成y=Asin(ωx+φ)的形式,并求f(x)的周期;
(2)用“五點法”作出函數(shù)f(x)在一個周期內(nèi)有圖象;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.
x     
 0 
π
2
 π 
2
 2π
f(x)     

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)的定義域為A,若x1,x2∈A且f(x1)=f(x2)時,總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(x∈R)是單函數(shù),下列說:
①函數(shù)f(x)=x2(x∈R)是單函數(shù);
②函數(shù)y=tanx,x∈(-
π
2
,
π
2
)是單函數(shù);
③若函數(shù)f(x)是單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④若f:A→B是單函數(shù),則對于任意b∈B,它至多有一個原象;
⑤若函數(shù)f(x)是某區(qū)間上的單函數(shù),則函數(shù)f(x)在該區(qū)間上具有單調(diào)性.
其中正確的是
 
.(寫出所有正確的序號)

查看答案和解析>>

科目: 來源: 題型:

若方程
x2-1
=2x+m有實數(shù)解,則實數(shù)m的取值范圍是( 。
A、[-
3
,0})∪[2,+∞)
B、[-
3
,0)∪(0,
3
]
C、(-∞,-
3
]∪[2,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目: 來源: 題型:

已知關(guān)于x的不等式x2≤2-|x-m|至少有一個負(fù)數(shù)解,則實數(shù)m的最小值為
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)a>0,兩個函數(shù)f(x)=eax,g(x)=blnx的圖象關(guān)于直線y=x對稱.
(1)求實數(shù)a,b滿足的關(guān)系式;
(2)當(dāng)a=1時,在(
1
2
,+∞)上解不等式f(1-x)+g(x)<x2
(3)試指出函數(shù)h(x)=f(x)-g(x)在(0,
1
e
]的零點個數(shù),并給出證明.

查看答案和解析>>

科目: 來源: 題型:

曲線y=
3x
上過點(1,1)的切線方程為
 

查看答案和解析>>

同步練習(xí)冊答案