相關(guān)習(xí)題
 0  202918  202926  202932  202936  202942  202944  202948  202954  202956  202962  202968  202972  202974  202978  202984  202986  202992  202996  202998  203002  203004  203008  203010  203012  203013  203014  203016  203017  203018  203020  203022  203026  203028  203032  203034  203038  203044  203046  203052  203056  203058  203062  203068  203074  203076  203082  203086  203088  203094  203098  203104  203112  266669 

科目: 來源: 題型:

已知矩形ABCD中,AB=2AD=4,E為CD的中點(diǎn),沿AE將三角形AED折起,使DB=2
3
,如圖,O、H分別為AE、AB的中點(diǎn).
(1)求證:直線OH∥平面BDE;
(2)求證:平面ADE⊥平面ABCE;
(3)求二面角O-DH-E的余弦值的大小.

查看答案和解析>>

科目: 來源: 題型:

某種報紙,進(jìn)貨商當(dāng)天以每份進(jìn)價1元從報社購進(jìn),以每份售價2元售出.若當(dāng)天賣不完,剩余報紙報社以每份0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時,求利潤Y的表達(dá)式;
(Ⅲ)若當(dāng)天進(jìn)貨量n=400,求利潤Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表).

查看答案和解析>>

科目: 來源: 題型:

已知一動圓P與圓M1:(x+4)2+y2=25和圓M2:(x-4)2+y2=1均外切(其中M1、M2分別為圓M1和圓M2的圓心).
(Ⅰ)求動圓圓心P的軌跡E的方程;
(Ⅱ)若過點(diǎn)M2的直線l與曲線E有兩個交點(diǎn)A、B,求|AM1|•|BM1|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(3-x)+x+2
(1)設(shè)函數(shù)g(x)=f(x)+mx(m∈R),若g(x)在區(qū)間(-∞,2]上是增函數(shù),求實數(shù)m的取值范圍;
(2)設(shè)h(x)=f(-x),將函數(shù)h(x)的圖象向右平移3個單位,再向下平移5個單位得到ω(x)的圖象.
①試確定函數(shù)ω(x)的單調(diào)區(qū)間;
②證明:ln(n!)2<n(n+1)(其中n∈Z,n≥1,n!=1×2×3×…×n)

查看答案和解析>>

科目: 來源: 題型:

利用和(差)角公式求下列各三角函數(shù)的值.
(1)sin(-
12
);
(2)cos(-
61π
12
);
(3)tan
35π
12

查看答案和解析>>

科目: 來源: 題型:

甲、乙兩人獨(dú)立地從六門選修課程中任選三門進(jìn)行學(xué)習(xí),記兩人所選課程相同的門數(shù)為ξ,則Eξ為( 。
A、1B、1.5C、2D、2.5

查看答案和解析>>

科目: 來源: 題型:

計算:cos10°cos(-20°)+sin20°sin170°.

查看答案和解析>>

科目: 來源: 題型:

已知直線l過點(diǎn)O(0.0)且與圓C:(x-2)2+y2=3有公共點(diǎn),則直線l的斜率取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

已知點(diǎn)E(4cosα,0),F(xiàn)(0,4sinα)(α∈R)為平面直角坐標(biāo)系xOy中的點(diǎn),點(diǎn)P為線段EF的中點(diǎn),當(dāng)α變化時,點(diǎn)P形成的軌跡π與x軸交于點(diǎn)A,B(A點(diǎn)在左側(cè)),與y軸正半軸交與點(diǎn)C.
(1)求P點(diǎn)的軌跡π的方程;
(2)設(shè)點(diǎn)M是軌跡π上任意一點(diǎn)(不在坐標(biāo)軸上),直線CM交x軸于點(diǎn)D⊥,直線BM交直線AC于點(diǎn)N.
①若D點(diǎn)坐標(biāo)為(2
3
,0),求線段CM的長;
②求證:2kND-kMB為定值.

查看答案和解析>>

科目: 來源: 題型:

計算:sin122°cos37°-cos58°sin143°.

查看答案和解析>>

同步練習(xí)冊答案