相關(guān)習(xí)題
 0  208132  208140  208146  208150  208156  208158  208162  208168  208170  208176  208182  208186  208188  208192  208198  208200  208206  208210  208212  208216  208218  208222  208224  208226  208227  208228  208230  208231  208232  208234  208236  208240  208242  208246  208248  208252  208258  208260  208266  208270  208272  208276  208282  208288  208290  208296  208300  208302  208308  208312  208318  208326  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=ax4+bx3+cx2+dx+e的圖象關(guān)于y軸對(duì)稱,其圖象過點(diǎn)A(0,-1),且在x=
3
2
處有極大值
1
8

(1)求f(x)的解析式;
(2)對(duì)任意的x∈R,不等式f(x)-tx2-t≤0恒成立,求t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
(a>0)
(1)若函數(shù)f(x)的極大值為2,極小值為-2,試求a,b的值;
(2)在(1)的條件下,若函數(shù)g(x)=k(x-
1
3
),試討論函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:

定義函數(shù)fn(x)=(1+x)n-1,(x>-2,n∈N*),其導(dǎo)函數(shù)記為fn′(x).
(1)求證:fn(x)≥nx;
(2)設(shè)
fn′(x0)
fn+1′(x0)
=
fn(1)
fn+1(1)
,求證:0<x0<1;
(3)是否存在區(qū)間[a,b]⊆(-∞,0],使函數(shù)h(x)=f3(x)-f2(x)在區(qū)間[a,b]上的值域?yàn)閇ka,kb]?若存在,求出最小的k值及相應(yīng)的區(qū)間[a,b].

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-x-lnx,是否存在正實(shí)數(shù)a,使得函數(shù)f(x)的極小值小于0,若存在,求出a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=
a
2
x2-1+cosx(a>0).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在[-
π
2
π
2
]上的最大值和最小值;
(2)若f(x)在(0,+∞)上為增函數(shù),求正數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知?jiǎng)訄AP與圓O1:x2-4x+y2+3=0外切,與直線l:x=-1相切,動(dòng)圓圓心P的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)通過(1,0)的直線與曲線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若AO,BO所在直線分別與直線y=x+4交于點(diǎn)E、F,求|EF|的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3+3bx2+3cx的兩個(gè)極值點(diǎn)為x1,x2,x1∈[-1,0],x2∈[1,2].證明:0≤f(x1)≤
7
2
,-10≤f(x2)≤-
1
2

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c在x=-
2
3
與x=1時(shí)都取得極值.
(1)求a,b的值與函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)若f(0)=1,且x∈[-1,2],求函數(shù)f(x)的最值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=-x3+ax2+a2x+1(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2x3-9x2+12x-3
(1)求函數(shù)f(x)的極值;
(2)若關(guān)于x的方程f(x)-a=0有3個(gè)實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案