相關(guān)習(xí)題
 0  208313  208321  208327  208331  208337  208339  208343  208349  208351  208357  208363  208367  208369  208373  208379  208381  208387  208391  208393  208397  208399  208403  208405  208407  208408  208409  208411  208412  208413  208415  208417  208421  208423  208427  208429  208433  208439  208441  208447  208451  208453  208457  208463  208469  208471  208477  208481  208483  208489  208493  208499  208507  266669 

科目: 來源: 題型:

設(shè)函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),gn(x)=1+x+
x2
2!
+
x3
3!
+…+
xn
n!
(n∈N+).
(Ⅰ)證明:f(x)≥g1(x);
(Ⅱ)證明:當(dāng)x≥0時(shí),f(x)≥g2(x);
(Ⅲ)當(dāng)x≥0時(shí),比較f(x)與gn(x)的大小,并證明.

查看答案和解析>>

科目: 來源: 題型:

若由1,x,x2構(gòu)成的集合中含有兩個(gè)實(shí)數(shù),求出x滿足的條件.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2.
(1)求函數(shù)f(x)在[t,2t](t>0)上的單調(diào)區(qū)間;
(2)若函數(shù)h(x)=f(x)+g(x)有兩個(gè)不同的極值點(diǎn)x1,x2(x1<x2),且x2-x1<ln2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx,當(dāng)x=0時(shí),函數(shù)f(x)取得極大值.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)已知結(jié)論:若函數(shù)f(x)=ln(x+1)+mx在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,且a>-1,則存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,試用這個(gè)結(jié)論證明:若-1<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),則對(duì)任意x∈(x1+x2),都有f(x)>g(x).

查看答案和解析>>

科目: 來源: 題型:

(x+yi)2=y+xi,y和x都為實(shí)數(shù),求x,y的值.

查看答案和解析>>

科目: 來源: 題型:

求下列函數(shù)的值域:y=
2x+3
x+1
(x≥1).

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=alnx+x2(a為常數(shù)).
(1)若a=-2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[1,e]時(shí),f(x)≤(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
2
3
x3-2ax2-3x.
(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(3,f(3))的切線方程;
(2)對(duì)一切x∈(0,+∞),af′(x)+4a2x≥lnx-3a-1恒成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a>0時(shí),試討論f(x)在(-1,1)內(nèi)的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目: 來源: 題型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一點(diǎn)F,使平面C1CF∥ADD1A1?若存在,求點(diǎn)F的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)在x∈[e-2,e2]上的最大值與最小值;
(2)若x>1時(shí),函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N*時(shí),ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案