相關(guān)習題
 0  208426  208434  208440  208444  208450  208452  208456  208462  208464  208470  208476  208480  208482  208486  208492  208494  208500  208504  208506  208510  208512  208516  208518  208520  208521  208522  208524  208525  208526  208528  208530  208534  208536  208540  208542  208546  208552  208554  208560  208564  208566  208570  208576  208582  208584  208590  208594  208596  208602  208606  208612  208620  266669 

科目: 來源: 題型:

已知A、B、C是直線l上不同的三點,O為直線l外任一點,向量
OA
,
OB
OC
滿足
OA
=[f(x)+2f′(1)]•
OB
-1n(x+1)
OC

(1)求函數(shù)y=f(x)的表達式;
(2)若不等式
1
2
x2≤f(x2)+m2-2bm-3對x∈[-1,1]及b∈[-1,1]都恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,P是棱CC1的中點,設(shè)CP=m(0<m<1).
(Ⅰ)試確定m的值,使直線AP與平面BDD1B1所成角的正切值3
2
;
(Ⅱ)在線段A1C1上是否存在一個定點Q,使得對任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論;
(Ⅲ)求三棱錐D-APD1的體積.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=xe -
x
a
(其中a∈R,a≠0,e=2.718…為自然對數(shù)的底數(shù)).
(1)求f(x)在[0,1]上的最大值;
(2)設(shè)函數(shù)g(x)=kx2+(k-15)x-15(k>1,k∈N+),函數(shù)f(x)的導函數(shù)為f′(x),若當x>0時,2f′(-ax)>g(x)恒成立,求最大的正整數(shù)k.

查看答案和解析>>

科目: 來源: 題型:

已知在正方形ABCD中,A(-2,1),B(0,2),求點C,D的坐標.

查看答案和解析>>

科目: 來源: 題型:

直線l:y=k(x+2
2
)與圓O:x2+y2=4相交于點A、B,△OAB的面積為S,求S的最大值,及取最大值時k的取值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ln(2-x)+ax,a>0,a∈R.
(1)設(shè)曲線y=f(x)在點(1,f(1))處的切線l平行于x軸,求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到所示的列聯(lián)表.
優(yōu)秀非優(yōu)秀總計
甲班10
乙班30
合計105
已知在全部105人中抽到隨機抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請完成列聯(lián)表;
(Ⅱ)若按下面的方法從甲班優(yōu)秀的學生抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到6或10號的概率.

查看答案和解析>>

科目: 來源: 題型:

已知甲盒中有2個紅球和2個白球,乙盒中有2個紅球和3個白球,將甲、乙兩盒任意交換一個球.
(Ⅰ)求交換后甲盒恰有2個紅球的概率;
(Ⅱ)求交換后甲盒紅球數(shù)ξ的分布列及期望.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2+bx,g(x)=ax3-3bx-4a+b,其中a>0,b∈R,
(1)證明:當0≤x≤2時,函數(shù)g(x)的最大值為|4a-3b|-2b;
(2)若對任意的x1,x2∈[-2,2],都有|f(x1)-f(x2)|≤16,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知f(x)=2cos(π-x)cos(
π
2
+x)+sin2xtanx.
(1)求f(x)的最小正周期;
(2)求f(x)的值域.

查看答案和解析>>

同步練習冊答案