相關(guān)習(xí)題
 0  210427  210435  210441  210445  210451  210453  210457  210463  210465  210471  210477  210481  210483  210487  210493  210495  210501  210505  210507  210511  210513  210517  210519  210521  210522  210523  210525  210526  210527  210529  210531  210535  210537  210541  210543  210547  210553  210555  210561  210565  210567  210571  210577  210583  210585  210591  210595  210597  210603  210607  210613  210621  266669 

科目: 來源: 題型:

對于函數(shù)f(x),若f(x)圖象上存在2個關(guān)于原點對稱,則稱f(x)為“局部中心對稱函數(shù)”.
(Ⅰ)已知二次函數(shù)f(x)=ax2+2ax-4(a∈R,a≠0),試判斷f(x)是否為“局部中心對稱函數(shù)”?并說明理由.
(Ⅱ)若f(x)=4x-m•2x+1+m2-4為定義域R上的“局部中心對稱函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

(1)已知0<a<1,解關(guān)于x的不等式x2-(a+
1
a
)x+1<0 
(2)若關(guān)于x的不等式ax2-6x+a2<0的解集是(1,m),求實數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:

已知不等式x2-x-2m+1>0
(1)若m=
3
2
,求出不等式的解集;
(2)若對任意實數(shù)x,已知不等式恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的圖象過點P(
π
12
,0),圖象與P點最近的一個最高點坐標(biāo)為(
π
3
,5).
(1)求函數(shù)的解析式;
(2)求函數(shù)的最大值,并寫出相應(yīng)的x的值;
(3)求使y≤0時,x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知△ABC中,A,B,C對邊分別為a,b,c,AD是BC邊上的中線,C=60°.
(1)若a=6且b=2,求AD的長;
(2)若AD=2,求S△ABC的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).
(1)求證:f(x)是奇函數(shù);
(2)如果x為正實數(shù),f(x)<0,并且f(1)=-
1
2
,試求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和Sn=-an-(
1
2
n-1+2(n∈N*),數(shù)列{bn}滿足bn=2n•an
(1)求a1
(2)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(3)設(shè)cn=log2
n
an
,數(shù)列{
2
cncn+2
}的前n項和為Tn,求滿足Tn
25
21
(n∈N*)的n的最大值.

查看答案和解析>>

科目: 來源: 題型:

根據(jù)以下算法的程序,畫出其相應(yīng)的算法流程圖,并指明該算法的目的及輸出結(jié)果.
n=1
S=0
Do
S=S+n
n=n+1
Loop while S≤2010
輸出n-1.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρsin2θ=acosθ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
 (t為參數(shù)),直線l與曲線C相交于A,B兩點.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線y2=8x的焦點為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點,且橢圓的長軸長為4
2
,左右頂點分別為A,B,經(jīng)過橢圓左焦點的直線l與橢圓交于C、D兩點.
(1)求橢圓標(biāo)準(zhǔn)方程:
(2)記△ABD與△ABC的面積分別為S1和S2,且|S1-S2|=4,求直線l方程;
(3)橢圓的上頂點G作直線m、n,使m⊥n,直線m、n分別交橢圓于點P、Q.問:PQ是否過一定點,若是求出該點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案