相關(guān)習(xí)題
 0  227199  227207  227213  227217  227223  227225  227229  227235  227237  227243  227249  227253  227255  227259  227265  227267  227273  227277  227279  227283  227285  227289  227291  227293  227294  227295  227297  227298  227299  227301  227303  227307  227309  227313  227315  227319  227325  227327  227333  227337  227339  227343  227349  227355  227357  227363  227367  227369  227375  227379  227385  227393  266669 

科目: 來源: 題型:選擇題

18.已知復(fù)數(shù)w滿足w-1=(1+w)i(i為虛數(shù)單位),則w=( 。
A.1-iB.-iC.-1+iD.i

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=mex-x-1.(其中e為自然對數(shù)的底數(shù))
(1)若曲線y=f(x)過點P(0,1),求曲線y=f(x)在點P(0,1)處的切線方程.
(2)若f(x)的兩個零點為x1,x2且x1<x2,求y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域.
(3)若f(x)>0恒成立,試比較em-1與me-1的大小,并說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC=$\frac{2\sqrt{3}}{3}$,求cosC+$\sqrt{2}$sinC的值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.某人解一道由兩問組成的題,第一問用2種不同的方法,第二問用了3種不同的方法,解此題用了6種不同的方法.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知{an}是首項為1的等比數(shù)列,若Sn是{an}的前n項和,且28S3=S6,則數(shù)列{$\frac{1}{{a}_{n}}$}的前4項和為( 。
A.$\frac{15}{8}$B.4C.$\frac{40}{27}$D.40

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=s-ke-x的圖象在x=0處的切線方程為y=x.
(1)求s,k的值;
(2)若$g(x)=mlnx-{e^{-x}}+\frac{1}{2}{x^2}-(m+1)x+1(m>0)$,求函數(shù)h(x)=g(x)-f(x)的單調(diào)區(qū)間;
(3)若正項數(shù)列{an}滿足${a_1}=\frac{1}{2}$,${a_n}={e^{{a_{n+1}}}}f({a_n})$,證明:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2an-2
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=log2an,cn=$\frac{{_{n}}^{2}}{{a}_{n}}$,求數(shù)列{cn}的前項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)討論函數(shù)f(x)在(0,+∞)的單調(diào)性
(2)過原點分別作曲線y=f(x)與y=g(x)的切線l1、l2,已知兩條切線的斜率互為倒數(shù),證明$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$或a=0.

查看答案和解析>>

科目: 來源: 題型:填空題

10.如圖,是一程序框圖,則輸出結(jié)果為75.

查看答案和解析>>

科目: 來源: 題型:解答題

9.2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元.距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(Ⅲ)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,根據(jù)表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
經(jīng)濟(jì)損失不超過
4000元
經(jīng)濟(jì)損失超過
4000元
合計
捐款超過
500元
a=30b
捐款不超
過500元
cd=6
合計
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:,${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

同步練習(xí)冊答案