14.已知{an}是首項為1的等比數(shù)列,若Sn是{an}的前n項和,且28S3=S6,則數(shù)列{$\frac{1}{{a}_{n}}$}的前4項和為(  )
A.$\frac{15}{8}$B.4C.$\frac{40}{27}$D.40

分析 利用等比數(shù)列的通項公式及其前n項和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q≠1,∵28S3=S6,
∴28(1+q+q2)=1+q+q2+q3+q4+q5,
∵1+q+q2≠0,
可得:28=1+q3,
解得q=3.
∴${a}_{n}={3}^{n-1}$.
∴$\frac{1}{{a}_{n}}$=$(\frac{1}{3})^{n-1}$
則數(shù)列{$\frac{1}{{a}_{n}}$}的前4項和為=$\frac{1-(\frac{1}{3})^{4}}{1-\frac{1}{3}}$=$\frac{40}{27}$.
故選:C.

點評 本題考查了等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,點($\sqrt{{a}_{n}}$,Sn)在曲線y=2x2-2上.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)y=$\frac{x}{\sqrt{lo{g}_{\frac{1}{2}}(4x-3)}}$的定義域為( 。
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)$f(x)=\sqrt{3}sinx+sin(\frac{π}{2}+x)$的一條對稱軸是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災,5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災,直接經(jīng)濟損失12.99億元.距離陸豐市222千米的梅州也受到了臺風的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如下頻率分布直方圖:
(Ⅰ)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)小明向班級同學發(fā)出倡議,為該小區(qū)居民捐款.現(xiàn)從損失超過4000元的居民中隨機抽出2戶進行捐款援助,設(shè)抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學期望;
(Ⅲ)臺風后區(qū)委會號召小區(qū)居民為臺風重災區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,根據(jù)表格中所給數(shù)據(jù),分別求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?
經(jīng)濟損失不超過
4000元
經(jīng)濟損失超過
4000元
合計
捐款超過
500元
a=30b
捐款不超
過500元
cd=6
合計
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:臨界值表參考公式:,${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)},n=a+b+c+d$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x2+6ax+1,g(x)=8a2lnx+2b+1,其中a>0.
(Ⅰ)設(shè)兩曲線y=f(x),y=g(x)有公共點,且在該點處的切線相同,用a表示b,并求b的最大值;
(Ⅱ)設(shè)h(x)=f(x)+g(x),證明:若a≥1,則對任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{h({x_2})-h({x_1})}}{{{x_2}-{x_1}}}>14$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若存在x0∈(0,1),使得(2-x0)e${\;}^{a{x}_{0}}$≥2+x0,則實數(shù)a的取值范圍是( 。
A.(ln3,+∞)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},則(∁UA)∩(∁UB)為( 。
A.{5,6}B.{4,5}C.{0,3}D.{2,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知直三棱柱ABC-A′B′C中,底面是以AC為斜邊的等腰直角三角形,且AA′=AB,求異面直線AB′與BC′所成角.

查看答案和解析>>

同步練習冊答案