相關(guān)習(xí)題
 0  228104  228112  228118  228122  228128  228130  228134  228140  228142  228148  228154  228158  228160  228164  228170  228172  228178  228182  228184  228188  228190  228194  228196  228198  228199  228200  228202  228203  228204  228206  228208  228212  228214  228218  228220  228224  228230  228232  228238  228242  228244  228248  228254  228260  228262  228268  228272  228274  228280  228284  228290  228298  266669 

科目: 來源: 題型:解答題

1.已知等腰梯形ABCD(如圖(1)所示),其中AB∥CD,E,F(xiàn)分別為AB和CD的中點,且AB=EF=2,CD=6,M為BC中點.現(xiàn)將梯形ABCD沿著EF所在直線折起,使平面EFCB⊥平面EFDA(如圖(2)所示),N是線段CD上一動點,且CN=$\frac{1}{2}$ND.
(1)求證:MN∥平面 EFDA;
(2)求三棱錐A-MNF的體積.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.函數(shù)f(x)=(3-x2)ex的單調(diào)增區(qū)間是( 。
A.(-∞,0)B.(0,+∞)C.(-∞,-3)和(1,+∞)D.(-3,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{9}=1(a>0)$的漸近線為$y=±\frac{3}{4}x$,則該雙曲線的離心率為( 。
A.$\frac{3}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{5}{4}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 來源: 題型:填空題

18.如果將直線l:x+2y+c=0向左平移1個單位,再向下平移2個單位,所得直線l′與圓C:x2+y2+2x-4y=0相切,則實數(shù)c的值構(gòu)成的集合為{-3,-13}.

查看答案和解析>>

科目: 來源: 題型:填空題

17.過直線l:x+y=2上任意點P向圓C:x2+y2=1作兩條切線,切點分別為A,B,線段AB的中點為Q,則點Q到直線l的距離的取值范圍為[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點分別為F1、F2,過F2的直線交雙曲線于P,Q兩點且PQ⊥PF1,若|PQ|=λ|PF1|,$\frac{5}{12}≤λ≤\frac{4}{3}$,則雙曲線離心率e的取值范圍為( 。
A.$(1,\frac{{\sqrt{10}}}{2}]$B.$(1,\frac{{\sqrt{37}}}{5}]$C.$[\frac{{\sqrt{37}}}{5},\frac{{\sqrt{10}}}{2}]$D.$[\frac{{\sqrt{10}}}{2},+∞)$

查看答案和解析>>

科目: 來源: 題型:填空題

15.拋物線y2=-8x的準(zhǔn)線與雙曲線$C:\frac{x^2}{8}-\frac{y^2}{4}=1$的兩條漸近線所圍成的三角形面積為2$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知在△ABC中,∠B=90°,D,E分別為邊BC,AC的中點,將△CDE沿DE翻折后,使之成為四棱錐C′-ABDE(如圖).

(Ⅰ)求證:DE⊥平面BC′D;
(Ⅱ)設(shè)平面C′DE∩平面ABC′=l,求證:AB∥l;
(Ⅲ)若C′D⊥BD,AB=2,BD=3,F(xiàn)為棱BC′上一點,設(shè)$\frac{BF}{FC'}=λ$,當(dāng)λ為何值時,三棱錐C′-ADF的體積是1?

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知點P(1,$\sqrt{5}$)在雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線上,則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.在四棱錐E-ABCD中,底面ABCD是正方形,AC與BD交于點O,EC⊥底面ABCD,G、F分別為EO、EB中點,且AB=$\sqrt{2}$CE.
(Ⅰ)求證:DE∥平面ACF;
(Ⅱ)求證:CG⊥平面BDE;
(Ⅲ)若AB=1,求三棱錐F-ACE的體積.

查看答案和解析>>

同步練習(xí)冊答案