相關(guān)習(xí)題
 0  228738  228746  228752  228756  228762  228764  228768  228774  228776  228782  228788  228792  228794  228798  228804  228806  228812  228816  228818  228822  228824  228828  228830  228832  228833  228834  228836  228837  228838  228840  228842  228846  228848  228852  228854  228858  228864  228866  228872  228876  228878  228882  228888  228894  228896  228902  228906  228908  228914  228918  228924  228932  266669 

科目: 來源: 題型:解答題

17.求焦點在x軸上,過點M(6,2),且滿足a=3b的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{10}$,且$\overrightarrow$•$\overrightarrow{c}$=$5\sqrt{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為( 。
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知數(shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,求a3,a4,a5,a6的值及數(shù)列{an}的通項公式.

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知橢圓C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,過左焦點F1的直線與橢圓C相交于A,B兩點,弦AB的中點坐標(biāo)為(-$\frac{4}{7}$,$\frac{3}{7}$)
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C長軸的左、右兩端點分別為D,E,點P為橢圓上異于D,E的動點,直線l:x=-4與直線PD,PE分別交于M,N兩點,試問△F1MN的外接圓是否恒過x軸上不同于點F1的定點?若經(jīng)過,求出定點坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點B(0,$\sqrt{3}$)是橢圓E的上頂點,F(xiàn)1,F(xiàn)2分別是橢圓E的左、右焦點.
(1)求橢圓E的方程;
(2)已知M為橢圓E上的動點,若以點M為圓心,MF1為半徑的圓與橢圓E的右準(zhǔn)線有公共點,求△F1MF2面積的最大值;
(3)過點B作直線l1,l2,使l1⊥l2,設(shè)直線l1,l2分別交橢圓E于點P,Q,連接PQ,求證:直線PQ必經(jīng)過y軸上的一個定點.

查看答案和解析>>

科目: 來源: 題型:填空題

12.m變化時,兩平行線3x-4y+m-1=0和3x一4y+m2=0之間距離的最小值等于$\frac{3}{20}$.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知:函數(shù)g(x)=x2-2x+1.設(shè)函數(shù)f(x)=$\frac{g(x)}{x}$
(1)若不等式f(2x)-k•2x≥0在x∈[-1,1]時恒成立,求實數(shù)k的取值范圍;
(2)如果關(guān)于x的方程f(|2x-1|)+t•($\frac{4}{|{2}^{x}-1|}$-3)=0有三個相異的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和公式為Sn=4an+2,求an

查看答案和解析>>

科目: 來源: 題型:填空題

9.若|$\overrightarrow{AB}$|=1,若|$\overrightarrow{CA}$|=2|$\overrightarrow{CB}$|,則$\overrightarrow{CA}$•$\overrightarrow{CB}$的最大值為2.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知點P是橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上一點,F(xiàn)1、F2是橢圓的兩個焦點,若|PF1|=4,則|PF2|=2.

查看答案和解析>>

同步練習(xí)冊答案