相關(guān)習題
 0  229034  229042  229048  229052  229058  229060  229064  229070  229072  229078  229084  229088  229090  229094  229100  229102  229108  229112  229114  229118  229120  229124  229126  229128  229129  229130  229132  229133  229134  229136  229138  229142  229144  229148  229150  229154  229160  229162  229168  229172  229174  229178  229184  229190  229192  229198  229202  229204  229210  229214  229220  229228  266669 

科目: 來源: 題型:解答題

9.甲、乙、丙三人進行羽毛球練習賽,其中兩人比賽,另一人當裁判,每局比賽結(jié)束時,負的一方在下一局當裁判,假設(shè)每局比賽中,甲勝乙的概率為$\frac{1}{2}$,甲勝丙、乙勝丙的概率都為$\frac{2}{3}$,各局比賽的結(jié)果都相互獨立,第1局甲當裁判.
(1)求第3局甲當裁判的概率;
(2)記前4局中乙當裁判的次數(shù)為X,求X的概率分布與數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:填空題

8.甲、乙兩盒中各有除顏色外完全相同的2個紅球和1個白球,現(xiàn)從兩盒中隨機各取一個球,則至少有一個紅球的概率為$\frac{8}{9}$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.甲、乙兩隊參加聽歌猜歌名游戲,每隊3人.隨機播放一首歌曲,參賽者開始搶答,每人只有一次搶答機會(每人搶答機會均等),答對者為本隊贏得一分,答錯得零分.假設(shè)甲隊中每人答對的概率均為$\frac{2}{3}$,乙隊中3人答對的概率分別為$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{2}$,且各人回答正確與否相互之間沒有影響.
(Ⅰ)若比賽前隨機從兩隊的6個選手中抽取兩名選手進行示范,求抽到的兩名選手在同一個隊的概率;
(Ⅱ)用ξ表示甲隊的總得分,求隨機變量ξ的分布列和數(shù)學期望;
(Ⅲ)求兩隊得分之和大于4的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

6.從1、2、3、4、5中不重復的隨機選取兩個數(shù),它們的和為奇數(shù)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目: 來源: 題型:解答題

5.甲、乙、丙三人參加微信群搶紅包游戲,規(guī)則如下:每輪游戲發(fā)10個紅包,每個紅包金額在[1,5]產(chǎn)生.已知在每輪游戲中所產(chǎn)生的10個紅包金額的頻率分布直方圖如圖所示.
(Ⅰ)求a的值,并根據(jù)頻率分布直方圖,估計10個紅包金額的中位數(shù);
(Ⅱ)以頻率分布直方圖中的頻率作為概率,若甲搶到來自[2,4)中3個紅包,求其中一個紅包來自[2,3),另2個紅包來自[3,4)的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知直線Ax+By+1=0.若A,B是從-3,-1,0,2,7這5個數(shù)中選取的不同的兩個數(shù),則直線的斜率小于0的概率為$\frac{1}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

3.某空間幾何體的三視圖如圖所示,則該幾何體的外接球表面積為9π.

查看答案和解析>>

科目: 來源: 題型:解答題

2.某電視臺舉行一個比賽類型的娛樂節(jié)目,A、B兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將A隊第六位選手的成績沒有給出,并且告知大家B隊的平均分比A隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.
(1)根據(jù)莖葉圖中的數(shù)據(jù),求出A隊第六位選手的成績;
(2)主持人從A隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;
(3)主持人從A、B兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

1.某數(shù)學興趣小組為了煙瘴視覺和空間能力與性別是否有關(guān),從興趣小組中按分層抽樣的方法抽取50名同學(男30人,女20人),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如表所示:(單位:人)
題型
性別
幾何題代數(shù)題總計
男同學22830
女同學81220
總計302050
(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(2)從這50名同學中隨機選取男生和女生各1人,求他們選做的題不同的概率;
(3)已知選擇做幾何題的8名女生有3人解答正確,從這8人中任意抽取3人對他們的答題情況進行研究,被抽取的女生中解答正確的人數(shù)記為X,求X的分布列及數(shù)學期望E(X).
附表及公式:
P(k2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}\sqrt{x},x≥0\\ \sqrt{-x},x<0\end{array}$,若f(a)+f(-1)=4,則a=(  )
A.±1B.9C.-9D.±9

查看答案和解析>>

同步練習冊答案