相關習題
 0  229332  229340  229346  229350  229356  229358  229362  229368  229370  229376  229382  229386  229388  229392  229398  229400  229406  229410  229412  229416  229418  229422  229424  229426  229427  229428  229430  229431  229432  229434  229436  229440  229442  229446  229448  229452  229458  229460  229466  229470  229472  229476  229482  229488  229490  229496  229500  229502  229508  229512  229518  229526  266669 

科目: 來源: 題型:選擇題

13.曲線y=2cos(x+$\frac{π}{4}$)cos(x-$\frac{π}{4}$)和直線y=$\frac{1}{2}$在y軸右側的交點的橫坐標按從小到大的順序依次記為P1,P2,P3,…,則|P3P7|=( 。
A.πB.C.D.

查看答案和解析>>

科目: 來源: 題型:填空題

12.直線y=$\sqrt{3}$x+1被圓x2+y2-8x-2y+1=0所截得的弦長等于4.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數f(x)=mx3-x在(-∞,+∞)上是減函數,則m的取值范圍是( 。
A.(-∞,0)B.(-∞,1)C.(-∞,0]D.(-∞,1]

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知橢圓C1:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1,拋物線C2:y2=4x,過拋物線C2上一點P(異于原點O)作切線l交橢圓C1于A,B兩點.
(Ⅰ)求切線l在x軸上的截距的取值范圍;
(Ⅱ)求△AOB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦點為F1,F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于點A,B兩點,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設$\overrightarrow{AM}=λ\overrightarrow{AB}$.
(Ⅰ)若$λ=\frac{3}{4}$,求橢圓C的離心率;
(Ⅱ)若△PF1F2為等腰三角形,求λ的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0)的焦點為F,準線為l,過點F的直線交拋物線于A,B兩點,過點A作準線l的垂線,垂足為E,當A點的坐標為(3,y1)時,△AEF為正三角形,則此時△AEF的面積為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過K點作曲線C:x2-4x+3+y2=0的切線,切點M到x軸的距離為$\frac{2\sqrt{2}}{3}$
(Ⅰ)求拋物線E的方程
(Ⅱ)設A,B是拋物線E上分別位于x軸兩側的兩個動點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O為坐標原點)
(i)求證:直線AB上必過定點,并求出該定點Q的坐標
(ii)過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知圓C的圓心坐標為(3,2),拋物線x2=-4y的準線被圓C截得的弦長為2,則圓C的方程為(x-3)2+(y-2)2=2.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數f(x)=ex(e=2.71828…),g(x)為其反函數.
(1)求函數F(x)=g(x)-ax的單調區(qū)間;
(2)設直線l與f(x),g(x)均相切,切點分別為(x1,f(x1)),(x2,f(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1,過點P(4,0)且不垂直于x軸的直線l與曲線C相交于A,B兩點.
(1)求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍;
(2)若B點關于x軸的對稱點為E點,探索直線AE與x軸的相交點是否為定點.

查看答案和解析>>

同步練習冊答案