相關(guān)習(xí)題
 0  230486  230494  230500  230504  230510  230512  230516  230522  230524  230530  230536  230540  230542  230546  230552  230554  230560  230564  230566  230570  230572  230576  230578  230580  230581  230582  230584  230585  230586  230588  230590  230594  230596  230600  230602  230606  230612  230614  230620  230624  230626  230630  230636  230642  230644  230650  230654  230656  230662  230666  230672  230680  266669 

科目: 來源: 題型:選擇題

1.某建筑物是由一個半球和一個圓柱組成,半球的體積是圓柱體積的$\frac{1}{4}$,其三視圖如圖所示,現(xiàn)需要在該建筑物表面涂一層防曬涂料,若每π個平方單位所需涂料費(fèi)用為100元,則共需涂料費(fèi)用(  )
A.6600元B.7500元C.8400元D.9000元

查看答案和解析>>

科目: 來源: 題型:選擇題

20.若a<b<0,c∈R,則下列不等式中正確的是( 。
A.$\frac{1}{a}$>$\frac{1}$B.$\frac{1}{a-b}$>$\frac{1}{a}$C.ac>bcD.a2<b2

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=($\sqrt{3}$sin$\frac{x}{4}$,1),$\overrightarrow{n}$=(cos$\frac{x}{4}$,cos2$\frac{x}{4}$),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)將f(x)的圖象向右平移$\frac{2π}{3}$個單位長度得到g(x)的圖象,若g(x)-k≤0在區(qū)間[0,$\frac{7π}{3}$]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.已知關(guān)于x的方程x2-2xcosA•cosB+(1-cosC)=0的兩根之和等于兩根之積,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

科目: 來源: 題型:填空題

17.函數(shù)f(x)=cos2x-sin2x+2sinxcosx(x∈R)的最小正周期為π,單調(diào)遞減區(qū)間為$[kπ+\frac{π}{8},kπ+\frac{5π}{8}](k∈Z)$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}1≤x≤2\\ y≤2\\ 2x-y≤2\end{array}\right.$,則z=2x+y的最大值為(  )
A.0B.2C.4D.6

查看答案和解析>>

科目: 來源: 題型:選擇題

15.設(shè)a為函數(shù)y=sinx+$\sqrt{3}$cosx(x∈R)的最大值,則a的值是( 。
A.2B.1C.-2D.-1

查看答案和解析>>

科目: 來源: 題型:選擇題

14.某飲料店的日銷售收入y(單位:百元)與當(dāng)天平均氣溫x(單位:℃)之間有下列數(shù)據(jù):
x-2-1012
y54221
甲、乙、丙三位同學(xué)對上述數(shù)據(jù)進(jìn)行研究,分別得到了x與y之間的四個線性回歸方程,其中正確的是( 。
A.$\stackrel{∧}{y}$=-x+2.8B.$\stackrel{∧}{y}$=-x+3C.$\stackrel{∧}{y}$=-1.2x+2.6D.$\stackrel{∧}{y}$=2x+2.7

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)p:l<x<2,q:2x>1,則P是q成立的(  )
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:填空題

12.函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-2,x≤1\\{log_2}(x-1),x>1\end{array}$,則f[f(${\frac{5}{2}})}$]=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案