相關(guān)習(xí)題
 0  230994  231002  231008  231012  231018  231020  231024  231030  231032  231038  231044  231048  231050  231054  231060  231062  231068  231072  231074  231078  231080  231084  231086  231088  231089  231090  231092  231093  231094  231096  231098  231102  231104  231108  231110  231114  231120  231122  231128  231132  231134  231138  231144  231150  231152  231158  231162  231164  231170  231174  231180  231188  266669 

科目: 來源: 題型:填空題

18.袋中有黑球和白球共7個(gè)球,已知從中任取2個(gè)球都是白球的概率為$\frac{1}{7}$.現(xiàn)有甲、乙兩人從袋中輪流摸球(甲先),每次摸出1球且不放回,直到摸出白球?yàn)橹梗畡t袋中原有白球的個(gè)數(shù)為3,甲摸到白球而終止的概率為$\frac{22}{35}$.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin2x.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的一部分圖象如圖所示,則( 。
A.f(x)=3sin(2x-$\frac{π}{6}$)+1B.f(x)=2sin(3x+$\frac{π}{3}$)+2C.f(x)=2sin(3x-$\frac{π}{6}$)+2D.f(x)=2sin(2x+$\frac{π}{6}$)+2

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知命題p:方程x2+2x+m=0沒有實(shí)數(shù)根,命題q:方程$\frac{x^2}{m+1}+\frac{y^2}{m-2}$=1表示雙曲線,若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知拋物線y2=2px(p>0)的準(zhǔn)線與圓(x-2)2+y2=16相切,則p=4.

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)a=log412,b=log515,c=log618,則( 。
A.a>b>cB.b>c>aC.a>c>bD.c>b>a

查看答案和解析>>

科目: 來源: 題型:填空題

12.函數(shù)f(x)對(duì)任意x1,x2∈[m,n]都有|f(x1)-f(x2)|≤|x1-x2|,則稱f(x)為在區(qū)間[m,n]上的可控函數(shù),區(qū)間[m,n]稱為函數(shù)f(x)的“可控”區(qū)間,寫出函數(shù)f(x)=2x2+x+1的一個(gè)“可控”區(qū)間是$[-\frac{1}{2},0]$.

查看答案和解析>>

科目: 來源: 題型:填空題

11.記max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,設(shè)M=max{|x-y2+4|,|2y2-x+8|},若對(duì)一切實(shí)數(shù)x,y,M≥m2-2m都成立,則實(shí)數(shù)m的取值范圍是[1-$\sqrt{7}$,1+$\sqrt{7}$].

查看答案和解析>>

科目: 來源: 題型:解答題

10.?dāng)?shù)列{an}、{bn}滿足:an+bn=2n-1,n∈N*
(1)若{an}的前n項(xiàng)和Sn=2n2-n,求{an}、{bn}的通項(xiàng)公式;
(2)若an=k•2n-1,n∈N*,數(shù)列{bn}是單調(diào)遞減數(shù)列,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.復(fù)數(shù)z=1+i+i2+i3的值是( 。
A.-1B.0C.1D.i

查看答案和解析>>

同步練習(xí)冊(cè)答案