相關習題
 0  231066  231074  231080  231084  231090  231092  231096  231102  231104  231110  231116  231120  231122  231126  231132  231134  231140  231144  231146  231150  231152  231156  231158  231160  231161  231162  231164  231165  231166  231168  231170  231174  231176  231180  231182  231186  231192  231194  231200  231204  231206  231210  231216  231222  231224  231230  231234  231236  231242  231246  231252  231260  266669 

科目: 來源: 題型:解答題

1.已知a>0,b>0,函數(shù)f(x)=|x-a|+|x+b|的最小值為2.
(Ⅰ)求a+b的值;
(Ⅱ)證明:a2+a>2與b2+b>2不可能同時成立.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知直線l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α≠0)經過橢圓C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ為參數(shù))的左焦點F.
(1)求實數(shù)m的值;
(2)設直線l與橢圓C交于A、B兩點,求|FA|×|FB|取最小值時,直線l的傾斜角α.

查看答案和解析>>

科目: 來源: 題型:填空題

19.函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3(x≤1)\\ lnx(x>1)\end{array}$,若方程f(x)=kx-$\frac{1}{2}$恰有四個不相等的實數(shù)根,則實數(shù)k的取值范圍是($\frac{1}{2}$,$\frac{\sqrt{e}}{e}$).

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知函數(shù)f(x)=|x-2|-|x+1|.
(1)解不等式f(x)>1;
(2)當x>0時,函數(shù)g(x)=$\frac{a{x}^{2}-x+1}{x}$(a>0)的最小值總大于函數(shù)f(x),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

17.設函數(shù)f(x)=lnx,g(x)=ex
(1)判斷函數(shù)y=f(x)-ag(x)極值點的個數(shù);
(2)求證:當 x∈(0,1)時,g(x)>$\frac{2}{2-{x}^{3}}$.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知在平面直角坐標系xOy中,過定點P傾斜角為α的直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t為參數(shù)).以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,圓心的極坐標為(3,$\frac{π}{2}$),半徑為3的圓C與直線l交于A,B兩點,則|PA|•|PB|=16.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{t}{2}}\\{y=t}\end{array}\right.$,曲線C的極坐標方程為ρ=4sinθ,試判斷直線l與曲線C的位置關系.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}}\right.$(t為參數(shù),α∈(0,$\frac{π}{2}$)),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4cosθ.
(1)若直線l與曲線C有且僅有一個公共點M,求點M的直角坐標;
(2)若直線l與曲線C相交于A,B兩點,線段AB的中點橫坐標為$\frac{1}{2}$,求直線l的普通方程.

查看答案和解析>>

科目: 來源: 題型:解答題

13.在平面直角坐標系中,過點P(3,1)的直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t為參數(shù),α為l的傾斜角).以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1:ρ=2cosθ,曲線C2:ρ=4cosθ.
(Ⅰ)若直線l與曲線C1有且僅有一個公共點,求直線l的極坐標方程;
(Ⅱ)若直線l與曲線C1交于不同兩點C、D,與C2交于不同兩點A、B,這四點從左至右依次為B、D、C、A,求|AC|-|BD|的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

12.已知不等式|x+2|-|x|≤a的解集不是空集,則實數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

同步練習冊答案