相關(guān)習(xí)題
 0  231991  231999  232005  232009  232015  232017  232021  232027  232029  232035  232041  232045  232047  232051  232057  232059  232065  232069  232071  232075  232077  232081  232083  232085  232086  232087  232089  232090  232091  232093  232095  232099  232101  232105  232107  232111  232117  232119  232125  232129  232131  232135  232141  232147  232149  232155  232159  232161  232167  232171  232177  232185  266669 

科目: 來源: 題型:填空題

16.在△ABC中,a=2,b=3,cosA=$\frac{2\sqrt{2}}{3}$,則sinB=$\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.寫出命題p:“?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],恒有sinx+cosx≤$\sqrt{2}$“的否定:?x∈[-$\frac{π}{2}$,$\frac{π}{2}$],使得sinx+cosx>$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.等腰三角形ABC繞底邊上的中線AD所在的直線旋轉(zhuǎn)半周所得的幾何體是( 。
A.圓臺B.圓錐C.圓柱D.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}與{bn}滿足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)a1=λ<0,bnn(n∈N*),求λ的取值范圍,使得{an}有最大值M與最小值m,且$\frac{M}{m}$∈(-2,2).

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知實(shí)數(shù)a>0,b>0,且a2+3b2=3,若$\sqrt{5}$a+b≤m恒成立.
(1)求m的最小值;
(2)若2|x-1|+|x|≥$\sqrt{5}$a+b對a>0,b>0恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.函數(shù)f(x)=$\frac{ax+b}{x^2+c}$的圖象如圖所示,則下列結(jié)論成立的是( 。
A.a>0,c>0B.a>0,c<0C.a<0,c>0D.a<0,c<0

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{k(x+2),x≤0}\\{-lnx,x>0}\end{array}\right.$(k<0),若函數(shù)y=f(f(x))-1有3個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為k<-1.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=xlnx,g(x)=$\frac{a}{x}$(其中a∈R)
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f′(x)+g(x)-1,試確定h(x)的單調(diào)區(qū)間及最值;
(Ⅲ)求證:對于任意的正整數(shù)n,均有e${\;}^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{n}}$≥$\frac{{e}^{n}}{n!}$成立.(注:e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{3}}{2}$,點(diǎn)A(0,-2)與橢圓右焦點(diǎn)F的連線的斜率為$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)O為坐標(biāo)原點(diǎn),過點(diǎn)A的直線l與橢圓C相交于P、Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面AEC⊥平面PDB;
(Ⅱ)當(dāng)PD=2AB,且E為PB的中點(diǎn),求二面角B-AE-C的余弦值.

查看答案和解析>>

同步練習(xí)冊答案