相關(guān)習(xí)題
 0  232104  232112  232118  232122  232128  232130  232134  232140  232142  232148  232154  232158  232160  232164  232170  232172  232178  232182  232184  232188  232190  232194  232196  232198  232199  232200  232202  232203  232204  232206  232208  232212  232214  232218  232220  232224  232230  232232  232238  232242  232244  232248  232254  232260  232262  232268  232272  232274  232280  232284  232290  232298  266669 

科目: 來(lái)源: 題型:解答題

12.討論函數(shù)f(x)=$\frac{x-2}{x+2}$ex的單調(diào)性,并證明當(dāng)x>0時(shí),(x-2)ex+x+2>0.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.已知命題p1:設(shè)函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-a,則f(x)在(0,2)上必有零點(diǎn);
p2:設(shè)a,b∈R,則“a>b”是“a|a|>b|b|”的充分不必要條件.
則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q1:p1∧(¬p2)中,真命題是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題正確的是(  )
A..若m⊥n,m⊥α,n∥β,則α∥βB.若m∥α,n∥β,α∥β,則m∥n
C..若m⊥α,n∥β,α∥β,則m⊥nD..若m∥n,m∥α,n∥β,則α∥β

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個(gè)花壇中,余下的2種花種在另一個(gè)花壇中,則紅色和紫色的花不在同一花壇的概率是$\frac{2}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.下列四個(gè)命題:
①兩直線平行的充要條件是它們的斜率相等;
②圓(x+2)2+(y+1)2=4與直線x-2y=0相交,所得弦長(zhǎng)為4;
③平面內(nèi)到兩定點(diǎn)的距離之和等于常數(shù)的點(diǎn)的軌跡是橢圓;
④拋物線上任一點(diǎn)M到其焦點(diǎn)的距離都等于點(diǎn)M到其準(zhǔn)線的距離.
其中,正確命題的序號(hào)為②④.(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

7.已知兩定點(diǎn)M(4,0),N(1,0),動(dòng)點(diǎn)P滿足$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{NP}$|,則動(dòng)點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.下列四個(gè)判斷:
①若兩班級(jí)的人數(shù)分別是m,n,數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為$\frac{a+b}{2}$;
②命題p:?x∈R,x2-1>0,則命題p的否定是?x∈R,x2-1≤0;
③p:a+b≥2$\sqrt{ab}$(a,b∈R)q:不等式|x|>x的解集是(-∞,0),則‘p∧q’為假命題;
④已知ξ服從正態(tài)分布N(0,σ2),且P(-2≤ξ≤0)=0.4,則P(ξ>2)=2.
其中正確判斷的個(gè)數(shù)有( 。
A.3個(gè)B.0個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.正四棱臺(tái)AC1的高是4cm,兩底面的邊長(zhǎng)分別是4cm和10cm,求這個(gè)棱臺(tái)的表面積和體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而F(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)在I上是“弱增函數(shù)”.
(1)請(qǐng)分別判斷f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函數(shù)”,
并簡(jiǎn)要說(shuō)明理由;
(2)若函數(shù)h(x)=x2+(sinθ-$\frac{1}{2}$)x+b(θ、b是常數(shù))
(i)若θ∈[{0,$\frac{π}{2}}$],x∈[0,$\frac{1}{4}}$]求h(x)的最小值.(用θ、b表示);
(ii)在x∈(0,1]上是“弱增函數(shù)”,試探討θ及正數(shù)b應(yīng)滿足的條件,并用單調(diào)性的定義證明..

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知集合A={x|2≤x≤6,x∈R},B={x|-1<x<5,x∈R},全集U=R.
(1)求A∩(∁UB);
(2)若集合C={x|x<a,x∈R},A∩C=∅,求實(shí)數(shù)a的取值范圍.
(3)若集合D={x|m+1<x<2m-1,x∈R},B∩D≠∅,求實(shí)數(shù)m 的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案